ヒートポンプ給湯機における貯湯制御

土屋 静男

「エコキュート」の愛称で広く知られている CO₂ヒートポンプ給湯機は、熱源機自身の効率は非常に高いものの、日々変動させる熱量と使用される熱量の関係により、貯湯効率は大きく変化する。したがって、ユーザが使用する熱量を、その使用状態からいかに精度よく予測するかが重要となる課題である。その結果、弊社で検討してきた学習制御手法について、貯湯タンク構造を含め紹介する。

キーワード: エコキュート, CO₂ ヒートポンプ給湯機, 学習制御, APF, 貯湯タンク構造

1. はじめに

地球温暖化問題を受け議決された京都議定書の温室効果ガス削減目標達成のべく、各分野で様々な省エネルギーの取り組みが行われている。しかし、民生部門、特に給湯分野においては、温室効果ガスの排出量は増加しており、より一層の削減努力が求められている。

弊社は東京電力株式会社、財団法人電力中央研究所と共同で 2001 年に先駆け、従来のフロン式と比較し高効率で環境負荷の低い CO₂ヒートポンプ給湯機の量産化を開始した。気候、「エコキュート」の愛称で、数社の参加とともにパワーセルが拡大し、2008 年 10 月には累計出荷台数 150 万台を達成した。

CO₂ヒートポンプ給湯機の市場の拡大は、京都議定書目標達成計画や、2008 年洞爺湖サミットに向けた「福島ビジョン」に記述されるなど、民生部門の省エネルギーのため大いに期待されている技術である。

CO₂冷媒および CO₂ヒートポンプの特徴は

■ CO₂冷媒の特徴（表 1）

- 自然環境に元来存在する物質である
- オゾン層破壊係数（ODP）が 0
- 地球温暖化係数（GWP）が 1
- 可燃性、毒性無く、工業副生成物である

すなわち、CO₂は特性、製造過程含めて環境負荷の極めて低い冷媒であることがいえる。

■ CO₂ヒートポンプの特徴

- 作動圧力が高い

冷媒の密度が高く圧力損失が小さい
- 高圧側が主に超臨界域で作動する

以上の特性を給湯機用に適用すると、従来のフロン系冷媒では容易でなかった高温沸上げが高圧率で実現可能となる。また、コール密度が高いことを利用すれば、低温作動下での冷媒配管内流れが抑制され、圧力損失の増加による能力低下が小さくできる。

2. CO₂ヒートポンプ給湯機システム

学習制御を導入する前に、CO₂ヒートポンプ給湯機のシステム構成原理と制御概要を説明しておく。図 1 が代表的な CO₂ヒートポンプ給湯機システムの基本構成である。

システムはヒートポンプ冷凍サイクルから構成される熱源部と、貯湯タンクから構成される貯湯部に分化されており、水冷配管で接続されている。

2.1 熱源部作動原理と制御概要

コンプレッサにて圧縮加熱された CO₂冷媒は、超臨界状態となり水熱交換器に流入し、ポンプにより貯

表 1 各種冷媒の特徴

| 各種冷媒の特徴 | CO₂ | CF12 | HFC-134a | R610a | R22 | R23 | R114 | R12 | HFC-114 | R123 | HFC-134a | R227ea | R124a | R32 | R11 | NH₃ |
|-----------------|-----|------|-----------|-------|-----|-----|------|-----|---------|------|---------|-------|-------|-----|-----|-----|-----|
| GWP | 1 | 8,500| 1,300 | 1,700 | 1,900| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ODP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ODP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

CO₂の自然環境に存在し、環境負荷の少ない冷媒
さらに、新機種では、冷媒圧力センサを採用し、運転初期は反応が早いため圧力を目標に、安定時には△Tを目標に膨張弁開度を制御することで、起動から性能安定までの時間短縮を図っている。

また、冷媒機の加熱エネルギーはコンプレッサ回転数を外気温度に応じてインバータにて可変することで、常に機器の設定能力を確保できるよう制御している。

2.2 貯湯部作動原理と制御概要

水回路に設定されたボンプにより、貯湯タンク下部の水を水熱交換器に送水。所定温度まで水を加熱する。加熱された水はタンク上部に戻り、冷温水の密度差により積層貯湯させていく。貯湯タンク下部には温度サーモスタットが設置されており、水温の積層貯湯量が適量になったらを検出子で判断し、所定温度に達した場合には熱源機の運転を停止させる。

また、水の加熱温度は、水回路に設置されたボンプの回転数をリニアに変化させて65~90℃の範囲で所定温度に制御している。熱源機の運転は、電力料金の安い深夜時間帯（午後11時~午前7時）に実施する。具体的には、午前7時に熱源機運転を停止=必要貯湯量確保できるよう、下記式を参考に算出した必要運転時間（Ha）を基に、運転開始時間を決定している。

\[Ha = \left(\frac{Q}{(860 \times P)} \right) \times Stp \]
3. CO₂ヒートポンプ給湯機のシステム効率

現在市販に普及しているCO₂ヒートポンプ熱源機の加熱能力は4.5kW, 6kWの二種類が主流となっている。これは、燃焼系給湯機のように大能力・瞬間方式とすることが重量・体積・価格的に困難な面が多いいためで、図1のように貯湯タンクを併設し事前に必要貯湯量を確保しておく必要がある。このため、給湯機としての効率はヒートポンプ熱源機の効率だけではなく、システム全体の効率で論じることが不可避である。

図4は、CO₂ヒートポンプ給湯機システムのエネルギーフローを概念的に示した図である。

具体的には、システムへの入力エネルギー（電力量）1に対し実際上使用された給湯熱量5の比率がシステム効率であり、2008年以降は熱源機単体のCOP（図4の安定時沸上熱量とシステム入力電力量1との比率）の他、APF値（年間給湯効率）として製品カタログへの記載が義務付けられている。

フロー図に沿ってエネルギーの流れを説明する。入力された電力量1に対し、貯湯部補機類（制御基盤等）電力量2が消費される。次に、ヒートポンプにより大気より吸熱された熱量が加わり、加熱能力は入力電力量1に対し大幅に増加する（最新機種では5倍）。

ただし、ヒートポンプで生み出された加熱熱量すべてが給湯熱量として使用されるわけではない。また、加熱に使用されない電力消費も必要となる。

特に翌日深夜に熱源機停止中の待機電力や、貯湯部に設定されている温かさから流出する温湯のロスを減じ、さらに、貯湯タンク表面からの熱放出によるロス5が加わる。

特に翌日深夜に熱源機が運転開始するまでに使用されなかった貯湯タンク内残湯は、放熱ロスを増加させるとともに、貯湯タンク内部の温度境界層を広げ、再度沸き上がることが必要な中途半端な温度の湯を残す結果となる。

弊社は図4のエネルギーフローを基に、エネルギーの詳細を分析し、給湯機システム効率の向上のために、ハード・ソフト両面での改良を実施してきた。

その詳細を次に説明していく。

4. システム効率改善対応

本稿の趣旨はソフト面での最適化であるが、給湯機システムの場合は、3節で説明したように、ハード、ソフト両面での改良が必要となる。したがって、まずはハード面での改善点を簡潔に説明しておく。

4.1 ハード面での改善

詳細構築、効果説明は本稿では省略するが、弊社が現在までエネルギーロスをハード面で改善してきた具体例を以下に列挙する。

・貯湯タンク、配管放熱ロス低減
 【断熱材質変更】
 グラスウール→発泡ポリスチレン成型品
 【貯湯タンク構造変更】
 中温水取り出し構造の採用
 【システム構成変更】
 熱源・貯湯部分離型→熱源・貯湯部一体型
 【ヒートポンプ効率向上】
 【エジェクタサイクル採用】
 2001年：3.46→2008年：5.00
 【電気ロス低減】
 【計測電力低減】
 操作リモコン表示自動消灯機能
 制御基盤消費電力低減等

4.2 ソフト面での改善

次に本稿の趣旨であるソフト＝制御面での改善内容を説明していく。制御で最もシステム効率に影響を与えるのが、深夜時間帯での貯湯量決定である。貯湯タンクを持つCO₂ヒートポンプ給湯機は、深夜時間帯にその日の消費量を使用熱量をあらかじめ予測して、深夜時間帯での貯湯熱量を決定しておく必要がある。

2009年6月号

(21) 321
必要量に対し余裕量を適度に見積もるとシステム効率低下に結びつくが、逆に余裕量を低減させていくと湯切れによるユーザ利便性低下を招く、このバランスをいかに最適化するかが最大の課題である。

弊社では給湯機開発の実績がなく、ユーザ使用状態に関するデータも不十分であったため、CO2ヒートポンプ給湯機開発当初は「ユーザに使用湯量を意識させない」こと、すなわち様々なユーザの使用状況に湯切れなく対応できることを最重要視し制御開発を進めてきた。このような方針を基に開始した初期の貯湯量決定の制御プロセスは以下のよう内容であった。

① 毎日の使用湯量（熱量）を、全日分と、使用量の増加する午後5時以降使用分の2種類に別けて記憶しておく。
② 湯使用パターンを7日間区切りで判断。
③ 7日間単位で全日使用湯量、午後5時からの使用湯量それぞれの最大値を日々算出し更新。
④ 前記③で算出した全日最大使用湯量を深夜時間帯での貯湯できるよう、貯湯温度と貯湯量を決定。
⑤ 午後5時での貯湯タンク内残湯量が③で算出した午後5時からの最大量より少ない場合は、その差分の熱源機を運転。
⑥ ユーザの急激な湯使用に適するべく、常時貯湯タンク内の湯を残しておくため最低貯湯量を決め、最低貯湯量を切った場合は、最低貯湯量を段階的に増加、7日間増加した最低貯湯量を切らない場合は、最低貯湯量を段階的に減少。

図5は以下の制御プロセスのタイムチャートを示したものである。

図5タイムチャートに沿った制御ロジックにて、実際のユーザー宅で貯湯量指令値と実使用湯量の推移を測定した結果を図6に示す。

当初の意図通り、湯切れ兆候はなく「ユーザに使用湯量を意識させない」目的は達成できているものの、余裕量＝貯湯タンク内残湯量は、特異日（20～21日）を除いても最大250L発生しており、使用湯量変動に柔軟に対応できる改善が必要であった。

課題を整理すると
① 最大使用湯量が発生した日から7日間は使用湯量に係わらず貯湯量を強制的に最大使用湯量に固定。
② 最大使用湯量が発生した日は最低貯湯量も切る割合が多く、最低貯湯量も強制的に増加するため、①に加えさらに残湯量が増加。
③ 上記①②はいずれも深夜貯湯量を増加させる方法に作用し、沸き上げ温度が上昇し、熱源機COPが低下し、貯湯タンク放熱ロスが増加。
④ 2はいずれも、ユーザ使用湯量のバラツキが要因である。したがって、このバラツキをパラメータにし制御改良を進めることで、湯切れ防止と残湯量減少の両立を図ることとした。

さらに改良を進めるに当たり、ユーザの省エネルギへの注目度を考慮した。2001年CO2ヒートポンプ給湯機発売開始や、2002年の京都議定書批准を受けて、地球温暖化防止のための脱炭素燃料社会実現に向けて、個人レベルでの省エネルギー・省CO2化の意識が急速に高まっている。この流れを受け、「使用湯量を意識させない」ことから、「使用湯量を意識して使ってもらうことによりなる効率向上を達成する」ことを目的に省エネルギーに特化した新たな運転モード追加を検討した。

4.3 バラツキに着目した新制御開発
過去7日間の最大量を貯湯することで必要余裕量確保できるとの考えを基に、日々の使用湯量バラツキが必要余裕量であるとの新たな仮説に基づき、制御ロジックを全面変更することとした。さらに、仮説
の効率的検証のため，ユーザモニタリングサンプル数増強と制御変更によるなら戦量・システム効率変化が機上レベルで検証できる専用シミュレーションプログラ

表 2 制御仕様比較表

<table>
<thead>
<tr>
<th>制御項目</th>
<th>おすすめ連続</th>
<th>省エネルギー連続</th>
</tr>
</thead>
<tbody>
<tr>
<td>貯湯量</td>
<td>平均値+a</td>
<td>平均値+a×(a<1)</td>
</tr>
<tr>
<td>貯湯量</td>
<td>0〜A</td>
<td>0〜(A-B) (B>5.0L)</td>
</tr>
<tr>
<td>デメリット表示</td>
<td>SW未操作</td>
<td>SW未操作</td>
</tr>
<tr>
<td>消費時間</td>
<td>60分通過後</td>
<td>5分通過後</td>
</tr>
<tr>
<td>消費判定</td>
<td>サイクル後、T<5℃</td>
<td>サイクル後、T<5℃</td>
</tr>
<tr>
<td>貯湯温度</td>
<td>MAX 90℃</td>
<td>MAX 75℃</td>
</tr>
</tbody>
</table>

この結果，貯湯制御を以下のように見直した。
① 7日間変化で合計使用量は，午後5時以降の使用量が著しく大きいので，パラグラフ（標準偏差）を日々算出し更新。
② 夜間時限定での貯湯が①で算出した平均値に与える，貯湯温度と貯湯量を決定。
③ 午後5時以降での貯湯タンク内貯湯量が①で算出された平均値に与える，その差分の熱源機運転を実施。
④ 最低貯湯量を毎日更新し，日々更新するとともに，パラグラフが少ない場合は最低貯湯量を0Lとする。

図7は図6に示した実際のユーザ宅の使用量推移を基に，改良制御を採用した場合の貯湯量指標値推移をシミュレーショッンにて検討した結果である。斜線部分が従来制御に対する改良効果（貯湯量低減効果）で，1カ月間の累計では貯湯量を5%低減できることが判明した。貯湯量は熱源機運転時間＝入力電力量に比例するため，システム効率5%向上の効果に相当する。

4.4 省エネルギー運転モード

今まで説明してきた内容は，運転モードを「おすすめ連続」に設定した場合の貯湯量制御の概要である。弊社はさらにCO2冷媒ヒートポンプ熱温調機の性能を最大限発揮できる「省エネルギー運転モード」を考案し，蓄積してきたフィールドデータによるシミュレーションおよび実証試験を積み重ね，実用上問題ない制御仕様を作り込みできた。その一例を図2に示す。

「省エネルギー運転モード」は，実証試験と各種性能を積み重ねた結果，十分ユーザ使用実態に対応できるレベルまで最適化できたため，ハード改善と合わせて，現在では全機種に採用している。

5. まとめ

以上説明したハード面，ソフト面での改良により，最新機種ではJRA 4505:2007に基づく年間給湯効率(ABP)は，業界トップレベルの3.5を達成している。2001年の初期モデル発売時はAPF測定基準があり，公定の比較はできないが，社内規格での測定ベースでは，最新機種は約15%の効率向上に相当する。

今後は，熱源機改良や熱ロス低減等の基本的効果改善だけでなく，車を参考としたユーザインタフェース改善による省エネルギー化の工夫が必要である。

筆者は，エコキュートはある意味，車と似た面を持つと考えている。車には10，15モードに代表される燃費基準がカタログ表示されているが，ユーザの走り方により，実際の燃費はカタログ値とかけ離れる場合があることは広く知られている。その走い方を可能限り少なくするため，最近のハイブリッド車等ではエネガイト機能（エコ達成度表示，使い方アドバイス等）により，省エネルギー運転を意識させる工夫が採用され始めている。

エコキュートも使い方によりAPFが変化することも否めず，制御だけではあらゆる場合に対応することは困難である。したがって，ユーザにお湯の使い方によりどの程度システム効率が変化するのか，どうすればより無駄なくお湯が使えるかを的確に知らせて，より良い使い方を意識させる工夫が必要である。そのためのインタフェースとして何が最も適否を提案するのが，次の最適制御の課題であると考える。車で消費するエネルギーも，お湯で消費するエネルギーも同じエネルギーであるから。
参考文献