羽田空港の発着容量拡大と国民経済的な効果

石倉 智樹

我が国の国内航空輸送ネットワークの中心である羽田空港は、常にその容量がボトルネックとなり、自由な路線形成の壁となっていたが、2010年第4滑走路建設により、大幅な発着容量拡大が実現する。本稿は、羽田空港の容量拡大が我が国の航空輸送産業の生産効率性に寄与してきた効果を推定するとともに、応用一般均衡モデルとの結びにより、その国民経済的効果についても推定する手法を紹介する。羽田空港の容量拡大は、航空輸送産業の生産活動を効率化させるばかりでなく、産業間の連関構造を通じて国民経済全体へと伝播し、様々な産業の生産額にも影響を及ぼすことが示される。

キーワード：羽田空港、発着容量、生産性、応用一般均衡モデル

1. はじめに

わが国の国内航空輸送ネットワークは、羽田空港を中心に形成されている。一方で、これまで羽田空港の発着容量は、常に段階段階で利用されており、実質的にその容量が航空輸送運航の制約となっていた。こうした課題に対し、発着容量の飛躍的な拡大のため、羽田空港の4本目の滑走路が建設されることとなり、2010年秋、ついに供用の時を迎えることとなった。

空港の発着容量が拡大することにより、航空輸送サービスの運航の自由度が高まることになる。例えば、容量制約のために開発できなかった新たな路線の運航が、より需要が期待できる時間帯での運行順を高めることができる可能性となる。このことを経済学的観点から、「生産効率性」あるいは「生産性」が向上する、という、つまり、運航のためにこれまでと変わらない量の労働資源や資本設備等を投入したとしても、より収益性の高い航空輸送サービスを行うことができるとき、考えることができるのである。特に、羽田空港のようなネットワークの中心となる空港における発着容量拡大が、航空輸送産業の生産性に寄与する度合いは大きいと考えられる。

また、航空輸送は、様々な産業の生産活動において業務交通の手段として中間投入的に利用される。したがって、空港整備による航空輸送産業の生産性向上は、あるある産業の経済活動に波及すると考えられる。こうした、任意の産業部門における技術的変化による他産業への経済波及効果を分析するには、応用一般均衡モデル（Computable General Equilibriumモデルの頭文字をとってCGEモデルと呼ばれる）が有用である。CGEモデルを利用することで、航空輸送産業の生産性変化がもたらす、国民経済レベルでの効果を計測することができる。ここでは、航空輸送の生産性分析とCGEモデル分析を組み合わせて羽田空港の容量拡大による国民経済的効果を分析した構想[4]のエッセンスを紹介する。なお、CGEモデルの解読に関しては、主なテキストが基礎理論を中心に常立っていることに対して、上田編[5]では理論に加えてデータ作成法や計算方法を解説しているため、初学者や実務者向けテキストとしてお勧めしたい。

2. 分析方法

2.1 枠組み

本稿で紹介する手法は、羽田空港の容量拡大がもた
らす航空輸送産業の生産性変化を推定するモデルと、
その生産性変化を入力値として経済効果を推定する
CGE モデルの組み合わせにより構成されるもので
ある。

生産性変化推定モデルは、我が国の航空輸送産業に
ついて、後述する生産関数アプローチを用いて、羽田
空港の発着容量と、同産業の生産性との関係をモデル
化し、羽田空港の容量拡大が生産性向上に及ぼす効果
を推定する。CGE モデルでは、航空輸送産業の生産
性変化を元々入力値として外生的に与え、その結果と
して我が国経済の各産業への影響をさせる経済効果が推定
される。

2.2 航空輸送産業の生産性変化推定モデル

ここでは、生産関数アプローチと呼ばれる方法によ
り、羽田空港の発着容量が、航空輸送産業の生産にど
れだけ寄与してきたかを推定するモデルを構築する。
この方法は、羽田空港の発着容量を生産性寄与要因と
して取り込んだ航空輸送産業の生産関係をモデル化し、
羽田空港の容量拡大が航空輸送産業の生産性に与えて
きた効果を定量的に推計するものである。

具体的には、経済効果推定に用いる CGE モデルと
の整合性をかんがい、以下のような Cobb-Douglas
型関数と呼ばれる生産関数を仮定した。

\[\begin{align*}
Y_{mt} &= A_t \cdot K_{mt}^{\beta_k} \cdot L_{mt}^{\beta_l} \cdot I_{mt}^{\beta_i} \\
\beta &= 1 - \beta_k - \beta_l - \beta_i
\end{align*} \]

(1)

\[A_t = \exp(\beta_k) \cdot \exp(\beta_l \cdot Trend) \cdot \exp(\beta_i \cdot D_{hata}) \cdot E_{t}^{\beta_i} \]

(2)

\[Y_{mt} : \text{時点 } t \text{での航空輸送企業 } m \text{の生産（収益）} \]

\[K_{mt} : \text{時点 } t \text{での航空輸送企業 } m \text{の資本投入} \]

\[L_{mt} : \text{時点 } t \text{での航空輸送企業 } m \text{の労働投入} \]

\[I_{mt} : \text{時点 } t \text{での航空輸送企業 } m \text{の中間投入} \]

\[A_t \text{ : 時点 } t \text{での航空輸送産業の生産性} \]

\[D_{hata} \text{ : 幅運賃制ダミー（1996年以降に1をとる）} \]

\[E_{t} \text{ : 時点 } t \text{における羽田空港の発着枠数} \]

\[\beta_k, \beta_l, \beta_i, \beta_a : \text{生産性にかかわるパラメータ} \]

\[\beta, \beta_k, \beta_l, \beta_i : \text{投入にかかわるパラメータ} \]

(1) 式は、航空輸送企業が輸送サービスの供給を行う
ための投入技術構造を意味しており、労働、資本、燃
油費や整備費などの中間的投入の、代替関係を表す式
である。(2) 式は、一次同次性をもつこと、CGE モデルで
仮定される生産技術構造と整合するための制約条件
である。(3) 式は、個別航空企業に依らない航空輸送産業
の生産性に影響する要因を表している。羽田空港では、
発着容量のほぼ限度まで利用されており、発着枠数と
して発着回数の上限が定められている。本モデルでは、
これを発着容量の指標として用いている。

(3) 式の定数にあたっては、モデルへの取り込みが想
定されるデータを試行錯誤的に検討した結果、これ
らの説明変数を採用した。トレンド要因変数とは、基
準となる適当な年を 1 として、1 年経過するに伴って
1 を加算した値であり、他の変数で説明できない、
生産性のトレンド変動を考慮するための変数である。
幅運用制ダミーは、国内航空輸送における運賃制限緩
和による、データへの影響を除くための変数である。

パラメータ推定には、我が国の大手エアライン 3 社
である、日本航空 (JAL)、全日空 (ANA)、日
本エアシステム (当時、JAS) を対象として、1985
年度から 2001 年度までの 17 年間の時系列データを用
いた。データの詳細は、指摘[4]を参照されたい。パ
ラメータ推定の結果は表 1 に示すことである。

この生産関数数を用いることにより、羽田空港の発着容
量変化がもたらす航空輸送産業の生産性向上への寄与
を定量的に推計することができる。

2.3 経済効果推定のための CGE モデル

CGE モデルとは、国内のあらゆる経済活動を対象
として、すべての産業の需要と供給、家計の消費活動
などを数理モデルとして記述したものである。もちろ
ん、一国の経済を一回りと扱っているため、分析の内容
にも結果にも粗さを伴うものであるが、政策による経
済効果をマクロに俯瞰するためには適している。また、
モデルの定式化は、ミクロ経済理論と整合的であるた
め、強固な理論的基礎を持つという長所がある。

本 CGE モデルは、次のような基本的前提条件に基づ
いて構築されている。

・ 日本国経済を 1 地域経済と見なし、家計と企業の
 2 種類の経済主体によって構成されているとする。

・ すべての市場が完全競争状態であり、各産業ご

| 表 1 生産関数パラメータ推定結果 |
|---|---|---|
| 変数 | パラメータ | 係数 |
| 定数項 | \(a \) | 0.1276 |
| Trend | \(b_1 \) | -0.0055 |
| D_hata | \(b_2 \) | 0.0109 |
| E_t | \(b_3 \) | 0.1123 |
| K_m | \(b_4 \) | 0.0697 |
| L_m | \(b_5 \) | 0.2318 |

自由度調整済み決定係数 0.966
とに生産技術が区別される、すなわち集計的企業
業の生産関数によって生産技術が定義される。

- 社会は長期的均衡状態にある。
- 家計は生産要素（労働・資本）を保有し、企業
にこれらを提供し対価として所得を受け取り、財・サービスの消費により効用を最大化する。
- 企業は、中間投入財と、家計から提供される労
働・資本を生産要素として投入することにより、財・サービスを生産し、利潤を最大化する。

以下に、具体的なモデルの構造を示す。ただし、CGEモデルの一部では、2.3節で紹介した生産性変
化推定モデルと重複した変数名を用いているものもあるが、両モデルは独立した体系であり、本節の変数名
と前節の変数名が同じ表記であっても、同じ変数を意味するものではない。

家計の行動については、所得制約下の効用最大化行
動として記述される。効用関数は、Cobb-Douglas型
関数を仮定する。家計は、労働と資本を企業に提供す
ることによって、その対価として所得を得る。貯蓄は、国際収支バランスとの整合のために定義しており、分解結果に大きな影響を与えるものではない。

\[
\begin{align*}
\max U &= \Pi(d_i) \sum a_i \\
\text{s.t.} & \quad \sum_i p_i d_i = I \\
& \quad I = wL + rK - S
\end{align*}
\]

（4）（5）（6）

- U: 家計の効用
- d_i: 家計の財・サービス需要量
- I: 家計の所得
- p_i: 財・サービス価格
- w: 賃金率
- L: 家計の労働初期保有量
- r: 資本レント
- K: 家計の資本初期保有量
- S: 貯蓄（海外への所得移転）
- γ_i: 家計の選好パラメータ（$\sum \gamma_i = 1$）

この効用最大化問題を解くと、次のような最終消費
需要の需要関数を導出することができる。

\[
d_i = \gamma_i \frac{I}{p_i}
\]

（7）

企業は中間投入および労働・資本を用いて生産活動を行い、利潤を最大化する。生産関数についても、効
用関数と同様にCobb-Douglas型で定式化する。最
適投入計画の基準として、以下の単位生産量あたり費
用最小化問題を考える。

\[
\begin{align*}
\min_{x_{i}, K_{j}, L_{j}} & \sum_i p_i x_{ij} + rK_j + wL_j \\
\text{s.t.} & \quad \gamma_i [\Pi(x_{ij})]^{a_i} K_j^{b_j} L_j^{c_j} = 1 \\
& \quad \sum_i a_i + a_K + a_w = 1
\end{align*}
\]

（8）（9）（10）

- x_{ij}: 産業 j の産出量
- x_{ij}: 産業 j が生産関数から投入する中間投入財の量
- K_j: 産業 j の資本需要量
- L_j: 産業 j の労働需要量
- a_i, a_K, a_w: 貼写のパラメータ
- π_i: 生産性パラメータ

この問題を解くことでより、中間投入財および生産
要素についての派生需要関数（企業の単位生産量があた
りに必要な投入需要関数）を導出することができる。

右肩にダスタリスクを付けた変数は、最適化問題の解
であることを示している。

\[
\begin{align*}
K^* &= \frac{1}{\eta_i} a_K B \\
L^* &= \frac{1}{\eta_i} a_L B \\
x^* &= \frac{1}{\eta_i} a_x B
\end{align*}
\]

（11）（12）（13）

ただし、

\[
B = [\Pi \left(\frac{p_i}{a_K} \right)^{a_i} \left(\frac{r}{a_K} \right)^{b_j} \left(\frac{w}{a_K} \right)^{c_j}]
\]

（14）

である。また、完全競争市場を仮定しているため、超
過利潤がゼロとなることにより、これらの解を用いて企
業が生産する財・サービスの価格も導出することができる。

\[
p_i = \sum_i p_i x_{ij}^* + rK^* + wL^*
\]

（15）

また、現実の経済では輸出入が行われており、純輸
出関（輸出－輸入）に相当する分だけ、家計所得と国
内最終消費需要が一致しない。モデルを正確に記述す
るためには、この点を考慮する必要があり、その処理
は、海外部門の関心が、と呼ばれる。ここでは、主な
分析対象が国内経済のみであるため、もっとも簡単な
純輸出量を外生変数と見なす方法を採用している。（6）
式の所得制約において、貯蓄の項として、海外収支の
バランスが反映されている。

\[
\begin{align*}
\sum_i p_i NE_t &= NX \\
S &= NX
\end{align*}
\]

（16）（17）

NX: 経常収支黒字
NE_t: 財・サービスの純輸出量（外生）

オペレーションズ・リサーチ
最後に、モデルを閉じるための均衡条件を示す。財・サービス市場および生産要素である資本と労働市場では、すべての市場において需要と供給が一致する。

\[x_i = \sum_j x_{ij} + d_i + NE_i \] \hspace{1cm} (10) \]
\[K = \sum_j K_j \] \hspace{1cm} (11) \]
\[L = \sum_j L_j \] \hspace{1cm} (12) \]

\(K \) と \(L \) は、それぞれ資本と労働の供給量、すなわち国民経済が保有する量であり、モデルの分析対象とする。この条件を満たすように値が調整され、すべての市場を清算する価格ベクトルが均衡解となる。すなわち、数学的な観点からは、CGEモデルは、要素価格と財・サービス価格に関する連立方程式体系といえる。

3. 羽田空港の発着容量拡大による経済効果推定

羽田空港の再拡張事業によって、発着枠の容量は26.7万回/年（分析を実施した2006年現在）から40.7万回/年へと増加する。航空輸送産業の生産性変化推定モデルを適用して、この容量拡大がもたらす生産性向上効果を推定すると、容量拡大以前に比べて4.8%の生産性向上という結果が出された。

CGEモデルでは、この航空輸送産業の生産性変化を入力し、国内各産業への波及的な経済効果を推定する。分析の手順は、まず、羽田空港の容量拡大以前における基準時点における経済状態を基に均衡状態を算出し、これをwithoutケースとする。次に、航空輸送産業の発着回数における生産性変化（9式における \(y_i \) を1.048倍して新たな均衡状態をwithケースとして算出し、その差を、羽田空港の容量拡大がもたらした経済効果として計測する。

CGEモデルの基準均衡データとして、2000年産業連関表32部門表を用いた。ただし、航空輸送サービス産業に着目した分析にあたり、32部門表では航空輸送産業が他の運輸業と区別されていなかったため、より詳細な部門数のデータを用いて「航空輸送」部門を他産業と分離して、基準均衡データを作成している。この基準均衡データとなる産業連関表から、家計の選好パラメータ、投入シェアパラメータ、および生産性パラメータが得られる。その詳細については、特稿[4]を参照されたい。

羽田空港の発着容量拡大による影響を直接受ける航空輸送産業では、生産額の増分が最も大きく、約1,561億円/年となり、産業全体での生産額増分は約2,502億円/年と推定された。

航空輸送産業以外の各産業における生産額変化推定結果を図1に示す。商業・対事業所サービスのような産業における生産額の伸びが大きいことが確認されるが、これらの産業部門が、出張など業務交通の手段として航空輸送を多く利用しているためと考えられる。また、生産額の変化率を見ると、鉱業・石油・石炭製品部門が最も大きく、このことは、航空輸送の中間投入として航空燃料の需要が大きく増加したことに起因すると考えられる。

![図1 羽田空港の発着容量拡大による各種産業の生産額変化推定結果](#)
羽田空港が我が国の国内航空ネットワークの核であることは自明であり、航空輸送産業の活動において極めて重要な役割を果たしていることは、容易に想像できる。羽田空港の容量拡大が航空輸送産業の生産効率性を向上させ、その結果として様々な産業への効果を波及させるであろうということが予想される。上記の結果のように、本研究は、様々な産業部門に対する影響を生産額変化という定量的な指標として推定できる点に特徴がある。

4. おわりに

本稿は、羽田空港の容量拡大が、国民経済的なレベルでもたらす効果を、生産性変化推定モデルと CGE モデルの組み合わせにより推定した研究事例を紹介した。羽田空港は日本の航空輸送を支えるインフラであり、その充実は、直接的に空港を利用する航空輸送産業ばかりではなく、間接的にあらゆる産業や家計の活動への効果をもたらす。これは、航空輸送に限ったことではなく、新幹線のような幹線鉄道や高速道路ネットワークなどの他の交通インフラにも当てはまることである。人流ばかりではなく、物流を支える港湾についても同様のことがいえるであろう。本稿で紹介した分析方法の枠組みは、このような他の交通インフラ整備による経済効果推定にも適用可能である。

また、拙稿[4]では、第4滑走路建設による容量拡大の効果だけでなく、過去の段階的な羽田空港の拡張がもたらしてきた経済効果についての推定も行っている。さらに、本稿では紙面の都合上割愛したが、各種産業の生産額変化だけではなく、公共事業の効率性評価に用いられる便益の推定も行っている。興味のある読者はぜひ参照されたい。

参考文献

