An algorithm for solving the edge-disjoint path problem on tournament graphs

02401223 徳島大学 * 中山慎一 NAKAYAMA Shin-ichi
01603863 昭和技術科学大学 増山 直 MASUYAMA Shigeru

1 Introduction

Given a connected graph \(G = (V, E) \) and \(K \) pairs of vertices \((x_i, y_i), \ i = 1, \ldots, K, \) the edge-disjoint path problem asks to construct \(K \) pairwise edge-disjoint paths connecting each pair \((x_i, y_i) \) from source \(x_i \) to sink \(y_i, \ i = 1, \ldots, K, \) where paths \(P_1, P_2, \ldots, P_i, i \geq 2, \) are edge-disjoint. A tournament graph (tournament for short) is a directed graph such that there is precisely one edge between each pair of vertices. On tournaments, J. Bang-Jensen showed a necessary and sufficient condition for the existence of edge-disjoint \((x_1, y_1), (x_2, y_2)\)-paths and an \(O(n^4) \) time algorithm for examining the existence of such paths where \(n \) is the number of vertices \([1]\). In this paper, we propose an \(O(n^2) \) time algorithm for examining the existence of edge-disjoint \((x_1, y_1), (x_2, y_2)\)-paths and for constructing them, if they exist, using the property of tournaments.

2 Definition

A digraph \(D \) consists of a pair \(V(D), A(D) \) where \(V(D) \) is a finite set of vertices and \(A(D) \) is a set of ordered pairs \((u, v) \) of vertices, called edges. If an edge \((u, v)\) exists in \(A(D)\), we say that \(u \) dominates \(v \). The number of vertices \(y \in U \subseteq V(D) \) dominated by \(x \) is denoted by \(d^+(x) \). We call \(d^+(x) \) the out-degree of \(x \) and simply is denoted by \(d^+(x) \). Similarly, the number of vertices \(y \in U \subseteq V(D) \) dominating \(x \) is denoted by \(d^-(x) \) and \(d^-(x) \) for short) is called the in-degree of \(x \). A component \(D' \) of a digraph is a maximal subgraph such that for any two vertices \(x, y \) of \(D' \), \(D' \) contains an \((x, y)\)-path and \((y, x)\)-path. A digraph \(D \) is strong if it has only one component.

3 Algorithm

We first describe a property of tournament.

[Property 1] When tournament \(T \) is not strong, it is divided into some components and we can label these components \(T_1, T_2, \ldots, T_i \) such that each vertex of \(T_j \) dominates all vertices of \(T_i \) if \(i < j \).

We say that \(T_1 \) (respectively, \(T_i \)) is the initial component (respectively, the terminal component) of \(T \).

By Property 1, for each degree \(d^+(v) \), if \(v_i \in V(T), v_j \in V(T), i < j \), is satisfied, then \(d^+(v_i) < d^+(v_j) \) holds. Moreover, the following lemma is deduced.

[Lemma 1] If \(d^+(v_i) = d^+(v_j) \) is satisfied, then \(v_i, v_j \) belong to the same component.

J. Bang-Jensen gave the necessary and sufficient condition of the existence of two edge-disjoint \((x_1, y_1), (x_2, y_2)\)-paths in tournament \(T \).

[Definition 1] Let \(T \) be a strong tournament and let \(x_1, y_1, x_2, y_2 \) be four different vertices in \(T \). The 5-tuple \((T, x_1, x_2, y_1, y_2)\) is said to be of Type 1a. There exists a proper subset \(S \subseteq V(T) \) such that \(y_1, y_2 \in S \), \(x_1, x_2 \in S = T - S \) and there is exactly one edge from \(S_2 \) to \(S_1 \) in \(T \).

Type 1b. It is not of Type 1a and there exists a partition \(S_1, S_2, S_3 \) of \(V(T) \) into disjoint non empty subsets with the following conditions. \(y_1 \in S_1, \ y_2 \in S_2, \ y_3 \in S_2, \ y_4 \in S_3 \) for \(i = 1 \) or 2: Vertices in \(S_1 \) dominate all the vertices in \(S_2 \) which again dominate all the vertices in \(S_3 \). There exists exactly one edge from \(S_3 \) to \(S_1 \) and it goes from the terminal component in \(T[S_3] \) to the initial component in \(T[S_1] \).

Type 2r. For some \(r \geq 1 \), there exists a partition \(S_1, S_2, \ldots, S_{2r+1} \) of \(V(T) \) into disjoint non empty subsets with the following conditions. \(y_1 \in S_1, y_2 \in S_2, x_1 \in S_{2r+1}, x_2 \in S_{2r+2} \) for \(i = 1 \) or 2: All the edges between \(S_i \) and \(S_j \) where \(i < j \) go from \(S_i \) to \(S_j \) with the following exceptions: There exists precisely one edge from \(S_{2r+1} \) to \(S_{2r+2} \) and it goes from the terminal component in \(T[S_3] \) to the initial component in \(T[S_2] \).

Type 2r+1. For some \(r \geq 1 \), there exists a partition \(S_1, S_2, \ldots, S_{2r+3} \) of \(V(T) \) into disjoint non empty subsets with the following conditions. \(y_1 \in S_1, y_2 \in S_2, \ x_1 \in S_{2r+2}, x_2 \in S_{2r+3} \) for \(i = 1 \) or 2: All the edges between \(S_i \) and \(S_j \) where \(i < j \) go from \(S_i \) to \(S_j \) with the following exceptions: There exists precisely one edge from \(S_{2r+3} \) to \(S_{2r+2} \) and it goes from the terminal component in \(T[S_3] \) to the initial component in \(T[S_2] \).
Lemma 2 [1] Let T be a tournament and let x_1, y_1, x_2, y_2 be different vertices such that T contains an (x_i, y_i)-path $i = 1, 2$. Then T has edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths unless x_1, y_1, x_2, y_2 all belong to the same component T_j of T and (T, x_1, x_2, y_1, y_2) is of one of the types $1a, 1b, 2r$ or $2r+1$ for some $r \geq 1$, in which case T does not have these paths.

Based on the property and these lemmas, we get the following procedure for examining whether edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths exist or not.

Procedure Check_Existence

begin

(Step 1) Check whether T has an (x_i, y_i)-path for $i = 1$ and 2, not necessary edge-disjoint. If not then T does not have edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths and the procedure stops.

(Step 2) $d^+_\text{max}(v) \leftarrow \max\{d^+(w) \mid (v, w) \in E(T)\}$.

(Step 3) Set the degree $d^+_\text{max}(u_i)$ of u_i into array D^+_i, $i = 1, \ldots, n$, and sort D^+_i in the order of ascending degree. Calculate the value of $T[i]$, $S[i]$ and $\text{Diff}[i]$.

(Step 4) Check whether x_1, y_1, x_2 and y_2 all belong to the same component T_j of T. If not then T has edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths and the procedure stops.

(Step 5) Let $T = T_j$ (namely, throw away the rest of T).

(Step 6) Assume that $d^+(x_i) \leq d^+(x_{3-i})$.

In the following steps, we examine whether T is divided into some component or not by exchanging the direction of an edge (v, w). In the order of ascending degree, check Condition 1 below and get a vertex v satisfying the condition first. If there is no vertex satisfying Condition 1, edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths exist and stops.

Condition 1: at least one of $\text{Diff}[1], \ldots, \text{Diff}[\text{max}(d^+_\text{max}(v))]$ has 1 and its index is not less than $i_{\text{min}}(d^+(x_i))$.

On $\text{Diff}[\text{max}(v)], \ldots, \text{Diff}[\text{max}(d^+_\text{max}(v))] - 1]$, find index i such that $\text{Diff}[i] = 1$. Assume here that an (v, w) is selected and $\text{Diff}[i] = \text{Diff}[j] = \ldots = \text{Diff}[k] = 1$, $i < j < \ldots < k$ hold. By exchanging the direction of the edge (v, w), T is not strong and an induced subgraph $D\{v_1, v_2, \ldots, v_n\}$ is a component T_1, $D\{v_{i+1}, \ldots, v_j\} = T_2$, ..., $D\{v_{i+k}, \ldots, v_n\} = T_k$.

(Step 7) Find a component including x_i. We here assume that $x_i \in V(T_k)$.

(Case I) When $x_3 - i$ also exists in T_k.

(I.I) If either y_i or y_{3-i} belongs to T_1, \ldots, T_k edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths exist in T and the procedure stops.

(I.II) If both y_i and y_{3-i} exist in T_{k+1}, \ldots, T_i, edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths do not exist in T and the procedure stops.

(Case II) When $x_3 - i$ exists in $T_j, k < j$.

(II.I) If y_{3-i} exists in $V(T_j)$, edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths exist in T and the procedure stops.

(II.II) If y_{3-i} exists in $V(T_j)$, $j' < j$, edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths exist in T and the procedure stops.

(II.III) If y_{3-i} exists in $V(T_j)$, $j' > j$, edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths do not exist in T and the procedure stops.

(Case III) When $x_3 - i, y_i$ and y_{3-i} all belong to T_i.

Let $T = T_i$ and $x_i = w$, namely, remove vertices and edges which do not belong to T_i from T. Actually, it is sufficient for the procedure to changes the value of arrays $D^+, \text{Diff}, d^+_\text{max}, V^+$.

Go to Step 6.

end. □

Lemma 3 On tournament, Procedure Check_Existence can examine whether edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths exist or not. □

Theorem 1 Procedure Check_Existence can examine the existence of edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths in $O(n^2)$ time. □

We obtain the following result though we do not write details because of the lack of space.

Theorem 2 Procedure Find_Path can find edge-disjoint $(x_1, y_1), (x_2, y_2)$-paths in $O(n^2)$ time. □

References