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1. INTRODUCTION

In this paper, we consider a repair-cost limit replace-
ment problem and develop the graphical solution method
to determine the optimal repair-cost limit which mini-
mizes the expected cost per unit time in the steady-state,
using the Lorenz transform of the repair-cost distribution
function. The model under consideration is somewhat
different from the existing ones [1, 2]. Also, the method
proposed can be applied to an estimation problem of the

optimal repair-cost limit from empirical cost data.

2. MODEL DESCRIPTION

Consider a single-unit repairable system, where each
spare is provided only by an order after a lead time L(> 0)
and each failed unit is repairable. The original unit be-
gins operating at time 0 and the mean time to failure for
each unit is m (> 0). When the unit has failed, the deci-
sion maker wishes to determine whether he or she should
repair it or order a new spare. If the decision maker esti-
mates that the repair is completed within a prespecified
cost limit vo € [0, 00), then the repair is started immedi-
ately at the failure time. The mean repair time is m,(> 0)
when the repair cost does not exceed vg. On the other
hand. if the decision maker estimates that the repair cost
exceeds the cost vg. then the failed unit is scrapped and
a new spare unit is ordered. Then the spare unit is deliv-
ered after the lead time L. Without any loss of generality,
it is assumed that the unit once repaired is presumed as
good as new and that the time required for replacement
is negligible.

The repair cost for each unit is unknown and the deci-
ston maker has a subjective probability distribution func-
tion H(v) on the repair cost. with density h(v) and finite
mean m,, (> 0). Suppose that the distribution function
H(wv) is arbitrary. continuous and strictly increasing in
v € [0, 00) , and has an inverse function, i.e. H~' (-).‘ Un-
der these model assurhptions. define the interval from the
start of the operation to the following start as one cycle.
The costs considered in this paper are the following;’

ks (> 0): a cost per unit shortage time.
¢ (> 0): a cost for each order.
We make the following additional assumptions:

(A-1) m, > L.

(A-2) kym. <ksL+c.

The assumptions (A-1) implies that the mean repair time
m, is strictly longer than the lead time. In the assump-
tion (A-2), the shortage cost when the repair cost does
not exceed vg is less than the total cost when the new
spare is ordered.

Let us formulate the expected cost during one cvele. If
the decision maker judges that a new spare unit should
be ordered, then the ordering cost for one cvcle is cH (o).
where H(-) = 1—H(-). In this case. the expected shortage
cost is ky LH(r0). On the other hand. if he or she selects
the repair option. the expected repair cost is ]n'“ vdH(r)
and the expected shortage cost is krm.H(1). Thus the

total expected cost for one cvele is
rn
Ec(vg) = / vdH(v) + k{m.H(vo) + Lﬁ(?’{l)}
Jo

+cH(mo). ' (1)

Also, the mean time of one cvcle is

Er(vo) = my +m.H(vo) + LH(vo). (2)
It may be appropriate to adopt an expected cost per unit
time in the steadyv-state over an infinite planning horizon.
The total expected cost per unit time in the steadv-state
is. from the renewal reward argument.

. E[the total cost on (0.¢

TC(rg) = lim [ ‘ (0.1]

1~ t

= Ec(vo)/Er{ro). (3)

Then the problem is to determine the optimal repair-cost

limit vo™ such as

TC(vy) = min TC(w). (4)
0<rg<e

3. GRAPHICAL METHOD
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In stead of differentiating T'C(vo) with respect to vo
directly, we here employ the following graphical method.
Define the Lorenz transform of the repair-cost distribu-
tion p = H(v) by

P
00) = o [ H s, 0<p<) (%)
™ Jo

Then the curve £ = (p,¢(p)) € [0,1] x [0,1] is called the
Lorenz curve. From the simple algebraic manipulation,
we have

THEOREM 3.1: Suppose that the assumption (A-1)
holds. The minimization problem in Eq.(4) is equivalent

to
- _ 9@ +¢
oBin M(p, 6(p)) = e (6)
where
_ omy — {ky(m, — L) — c}my
&= M (m, — L) ’ (7)

Consequently, the optimal repair-cost limit is deter-
mined by p* = H(vg) which minimizes the tangent slope
from the point B = (-7, =€) € (—00,0) x (—00,0) to the
curve £ in the plane (z,y) € (—o0,+00) X (—o00, +00)
under (A-2).

More precisely, we prove the uniqueness of the optimal

repair-cost, limit.

THEOREM 38.2: (1) Suppose that the assumptions (A-
1) and (A-2) hold. Then there exists a unique optimal so-
lution p* = H(vg) (0 < vy < oo) minimizing A (p, d(p)),
where p* is given by the z-coordinate in the point of con-
tact for the curve £ from the point B.

4. COMPETING REPAIR-PERSONS PROBLEM

Suppose that there are two repair-persons with differ-
ent repair abilities.  We classify two repair-persons into
Repair-person 1 and Repair-person 2. respectively. Their
repair costs Xy and X, are non-negative random variables
with distribution functions H;(v) (j = 1.2) and the same
finite mean 1/m,,. respectively. We requtire the following

definition on the stochastic ordering.

DEFINITION 4.1: (1) X is usually stochastic-ordered
with respect to X (denoted as X1 <« Xo) if Hi(r) <
TI—Q(v). :

(2) X, is star-shaped stochastic-ordered with respect to
X (denoted as X; <. X;) if H; '(H,(v))/v is increasing
in v € (0, H;'(1)).

The following theorem can be proved applyving the result
by Chandra and Singpurwalla (3].

THEOREM 4.2: Define the optimal repair-cost limits
for two repair-persons with the same mean repair time
1/m,, as v3; = H;'(p}) and v3, = H;'(p3), respec-
tively, where py and p3 are the solutions for Eq. (6) with
H;(v) (j = 1,2). If the repair cost for Repair-person
1 is smaller than that for Repair-person 2 in the usual
stochastic ordering, then vg, < 1’52.'

5. STATISTICAL ESTIMATION METHOD

Based on the graphical idea in Section 3. we pro-
pose a statistical method to estimate the optimal repair-
cost limit replacement policv. Suppose that the optimal
repair-cost limit has to be estimated from an ordered
complete sample 0 = xp < 7 <12 < -+ < &, of repair
cost data from an absolutelv continuous repair-cost distri-
bution H, which is unknown. The estimator of H(v) =p
is the empirical distribution given hy

ifn  for x; << rTiq,
H,(z) = { / v <1,

1 for (9)

where ¢ = 0,1,2.---.n — 1. Then the empirical Lorenz
curve is defined as

[np] n
¢),‘EZI(7,‘/Z.’I‘,’. (]0)
i=1 =1

where [a] is the greatest integer in a. Plotting the point
(i/n, i), (:=10.1.2.---.n). and connecting them by line
segments. we obtain the empirical Lorenz curve £, €
[0,1] x [0.1].

As empirical counterpart of THEOREMN 3.1, we pro-
pose a non-parametric estimmator of the optimal repair-
cost limit.

THEOREM 5.1: The optimal repair-cost lmit can be
estimated by o, = x;-. where

i +¢& } (11)

{1"] min -
o<i<n i/n 47
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