1—E—8

W0VEERAA L —Y 3 Y X« 4 —FER
KERARKS

A Poisson arrival selection problem for Gamma prior
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1 Introduction

Bruss (1987) studied a continuous-time generaliza-
tion of the so-called secretary problem which is as
follows: A man has been allowed a fixed time 7" in
which to find an apartment. Opportunities to inspect
apartments occur at the epochs of a homogeneous
Poisson process of unknown intensity A. He inspects
each apartment when the opportunity arises, and he
must decide immediately whether to accept or not.
At any epoch he is able to rank a given apartment
amongst all those inspected to date, where all permu-
tations of ranks are equally likely and independent of
the Poisson process. The objective is to maximize the
probability of selecting the best apartment from those
(if any) available in the interval [0,7]. Bruss (1987)
showed that if the prior density of the intensity of the
Poisson process is exponential with parameter a > 0,
E(1/a) (note that this is Gamma distribution with
parameters 1 and 1/a, G(1,1/a)), then the optimal
strategy is to accept the first relatively best option
(if any) after time s* = (T'+ a)/e — a.

To find the optimal strategy for Bruss’s problem,
Bruss directly calculated the maximum probability
of selecting the best apartment when the current rel-
atively best option is accepted, and the maximum
probability of selecting the best one when the cur-
rent relatively best option is rejected. In Section 2
of this paper, his problem is resolved from a different
approach and it is shown that it is monotone in the
sense of Chow, Robbins, and Siegmund. The follow-
ing questions naturally arise: if the prior density of
the intensity is Gamma G(r,1/a),r > 1, what is the
optimal strategy, and is it still a monotone problem?

In Section 3, the problem of Gamma prior intensity
with the parameter r = 2 is studied in detail and the
optimal strategy for the problem is solved.

2 Resolution of Bruss’s prob-
lem

The one-stage look-ahead stopping strategy is em-
ployed to resolve Bruss’s problem. Let Si,S2,---

denote the arrival times of the Poisson process,
{N(t)}t>0. For unknown intensity A, an exponen-
tial prior density aexp{—al}I(A > 0) is assumed,
where a is known and nonnegative. Then by Bayes’
theorem, the conditional posterior density f(A|S; =
s) given S; = s, is f(AlS; = s) = M/)(s +
a)tlexp{—(s + a)A} (A > 0),s € [0,T]. Bruss
showed that the posterior distribution of N(T") given
81, -, 8; is equivalent to a Pascal distribution with
parameters (J, (s + a)/(T + a)). Using this property
on N(T'), he obatined the following theorem.

Theorem 1 (Bruss(1987)). If the prior den-
sity of the intensity of the Poisson process is ex-
ponential with parameter a > 0, then the problem
is monotone and the optimal strategy is to accept
the first relatively best option (if any) after time
s*=(T+a)/e—a.

3 Bruss’ problem with Gamma
prior intensity

Suppose that the prior density of the intensity A of
the Poisson process is Gamma with parameters r >
0,a > 0, G(r,1/a). Then, the density of A is given
by

a

g()\) _ f‘%e—cﬂ/\'r—l.

The posterior density of A given S; = s1,--+,8; =
s can be computed and turns out to be Gamma,
G(r + j,1/(a + s)). We can see that the posterior
distribution of N(T') given S; = s1,-+,5; = s is
again a Pascal distribution.

Lemma 2. The posterior distribution of N(T')
given Sy = 81,++,8; = 8(0 < s < T) only depends
on the values of j and S;, and is a Pascal distribution
with parameters r + j, (s + a)/(T + a).

For the problem with Gamma prior density of the
intensity, let U;(s), V;(s) and W;(s) denote the max-
imum probabilities when we face the jth option,
which is the relatively best one, at time s and ac-
cept it, reject it and behave optimally hereafter, re-
spectively . Using the formula (n + r — 1)!/n =
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