1 はじめに

AHP (Analytic Hierarchy Process) の整合性は、通常、CI の値で判断されている。CI の値は一対比較行列の主固有値である \(\lambda_{\text{max}} \) により左右される。実際には一対比較を行う際に誤差が含まれるため \(\lambda_{\text{max}} \) の値は代替案の数 \(n \) に一致することはほとんどない。また、整合性が良くないと判断された場合には、通常、一対比較行列の一部の要素のみの修正が行われている。

本報告では、\(\lambda_{\text{max}} \) の値が \(n \) に一致しない場合、一対比較行列の要素全体を修正し \(\lambda_{\text{max}} \) の値を \(n \) に収束させる方法を提案する。そして、ウエイトの正解を設定した一対比較行列を作成し、誤差を加え、提案した方法により修正を行った場合、ウエイトへの影響を検討する。

2 提案する一対比較行列の修正方法

提案する方法は、一対比較行列の中心の任意の 3 つの代替案についての評価値の関係から一対比較行列全体を反復修正するものである。

\(n \times n \) 一対比較行列を \(A = [a_{ij}], i = 1 \sim n, j = 1 \sim n \) とし、ウエイトを \(w_i, i = 1 \sim n \) とする。整合性が良い場合、\(A \) は次式のようになる。

\[
A = \begin{bmatrix}
 w_1/w_1 & w_1/w_2 & \cdots & w_1/w_n \\
 w_2/w_1 & w_2/w_2 & \cdots & w_2/w_n \\
 \vdots & \vdots & \ddots & \vdots \\
 w_n/w_1 & w_n/w_2 & \cdots & w_n/w_n
\end{bmatrix}
\]

(1)

このように、\(a_{ij} = w_i/w_j \) より、任意の \(k \) について

\[
a_{ij} = (w_i/w_k)/(w_j/w_k) = a_{ik}/a_{jk} = a_{kj}/a_{ki} \tag{2}
\]

という関係が得られる。しかし実際には式 (2) の右辺には一対比較の際の誤差が含まれているので、\(k = 1 \sim n \) について計算した \(a_{ij} \) の値はそれぞれ異なるはずである。そこで、次式のように幾何平均により \(a_{ij} \) を修正して行く。

\[
a_{ij} = \left(\prod_{k=1}^{n} (a_{kj}/a_{ki}) \right)^{1/n} \tag{3}
\]

そして \(\lambda_{\text{max}} \) が \(n \) に収束するまで繰り返す。

3 適用例

\(n = 5 \) の場合の一対比較行列について適用する。あらかじめ \(w_i = i, i = 1 \sim n \) とウエイトを等間隔に決定しておく。ウエイトの総和を 1 に正規化すると次式となる。

\[
W = \begin{bmatrix}
 0.0666 & 0.1333 & 0.2000 & 0.2666 & 0.3333 \\
 0.0666 & 0.1333 & 0.2000 & 0.2666 & 0.3333 \\
 0.1333 & 0.2000 & 0.2666 & 0.3333 & 0.4000 \\
 0.2000 & 0.2666 & 0.3333 & 0.4000 & 0.4667 \\
 0.2666 & 0.3333 & 0.4000 & 0.4667 & 0.5333 \\
\end{bmatrix}
\]

(4)

式 (4) を使い、\(a_{ij} = w_i/w_j \) の関係より、\(\lambda_{\text{max}} = 5, CI = 0 \) の一対比較行列 \(A_o \) を求めることが々次式のようになる。

\[
A_o = \begin{bmatrix}
 1.0000 & 0.5000 & 0.3333 & 0.2500 & 0.2000 \\
 2.0000 & 1.0000 & 0.6666 & 0.5000 & 0.4000 \\
 3.0000 & 1.4999 & 1.0000 & 0.7500 & 0.6000 \\
 4.0000 & 2.0000 & 1.3333 & 1.0000 & 0.8000 \\
 5.0000 & 2.5000 & 1.6666 & 1.2500 & 1.0000 \\
\end{bmatrix}
\]

(5)

式 (5) をもとにして、乱数により誤差 \(e_{ij} \) を加えた一対比較行列を作り、式 (3) で提案した方法により修正してみる。例 1 では \(CI \) の値が 0.1 に近い場合を、例 2 では \(CI \) の値が大きい場合を示す。

3.1 例 1

\(A_o \) に \(e_{ij} \in \text{N}(0,1^2) \) により誤差を加え作成したいくつかの一対比較行列のうち、\(CI \) の値が 0.1 に近い例として \(A_o \) に次式に示す。

\[
A_o = \begin{bmatrix}
 1.0000 & 0.3778 & 0.8931 & 0.2694 & 0.2745 \\
 2.6463 & 1.0000 & 0.2804 & 0.7188 & 0.5922 \\
 1.1196 & 3.5650 & 1.0000 & 0.7383 & 0.5701 \\
 3.7115 & 1.3911 & 1.3543 & 1.0000 & 0.8799 \\
 3.6428 & 1.6883 & 1.7539 & 1.1364 & 1.0000 \\
\end{bmatrix}
\]

(6)

式 (6) は \(\lambda_{\text{max}} = 5.396, CI = 0.099 \) である。提案した手法により修正した一対比較行列 \(A'_o \) は式 (7) のようになり、\(\lambda_{\text{max}} = 5, CI = 0 \) が得られた。

\[
A'_o = \begin{bmatrix}
 1.0000 & 0.6018 & 0.4308 & 0.3323 & 0.2895 \\
 1.6614 & 1.0000 & 0.7159 & 0.5522 & 0.4811 \\
 2.3207 & 1.3968 & 1.0000 & 0.7713 & 0.6720 \\
 3.0086 & 1.8108 & 1.2963 & 1.0000 & 0.8712 \\
 3.4533 & 2.0785 & 1.4880 & 1.1478 & 1.0000 \\
\end{bmatrix}
\]

(7)
正解であるA_0のウェイトに近づいていることがわかる。

3.2 例2

A_0に$N(0,2^2)$の平均乱数により誤差を加え成したタイプの対比列のうち、CIの値が大きい例とし
てA_2を次式に示す。

$$A_2 = \begin{bmatrix}
1.0000 & 2.0940 & 0.0707 & 0.3996 & 0.0772 \\
0.4775 & 1.0000 & 1.0955 & 1.0712 & 2.1457 \\
14.1398 & 0.9128 & 1.0000 & 2.4378 & 0.1630 \\
2.5020 & 0.9334 & 0.4102 & 1.0000 & 2.4328 \\
12.9505 & 0.4660 & 6.1326 & 0.4110 & 1.0000
\end{bmatrix} \quad (8)$$

式(8)は$\lambda_{\text{max}} = 8.040, CI = 0.760$であり、整合性は良い。そこで、式(8)を有向グラフで表現してみると、図1のように表2に示すサイクルを持っている。

つまり、対比列に矛盾が含まれている。サイクルを消すためには、a_{23}の修正が必要である。しかし、サイクル(3 4 5)を消すための指摘だけはできない。

提案した手法により修正した一対比列行列A'_2は次式のようになる。

$$A'_2 = \begin{bmatrix}
1.0000 & 0.3280 & 0.2454 & 0.2874 & 0.1974 \\
3.0480 & 1.0000 & 0.7481 & 0.8760 & 0.6019 \\
4.0742 & 1.3366 & 1.0000 & 1.1709 & 0.8046 \\
3.4794 & 1.1415 & 0.8540 & 1.0000 & 0.6871 \\
5.0635 & 1.6612 & 1.2428 & 1.4552 & 1.0000
\end{bmatrix} \quad (9)$$

式(9)では例1と同様に$\lambda_{\text{max}} = 5, CI = 0$が得られた。また、有向グラフで表現しても表2に示したサイクルはすべて消えていた。

A_0, A_2, A'_2のウェイトの比較を図3に示す。A'_2で

はサイクルが消えたので整合性は改善されている。しかしながら、正解であるA_0のウェイトと比較してw_3とw_4の

順位が逆転している。これは、整合性の良くない対比列

から修正を行ったので仕方がないかもしれない。

4 結論

意思決定者が作成した対比列行列に修正を加える

ことには賛否両論があると思われる。本報告のねらいは

意思決定者への最終決定の判断材料を提供することであ

る。適用例から判断すると、整合性の良い対比列

行列はさらに正解に近く、整合性の良くない対比列

行列は修正前と修正後の違いから原因となる要素を指

摘すことができるがわかった。以上のことから、

提案した手法は有効であると思われる。