A parallel algorithm for finding all hinge vertices of a Circular-Arc graph

01506161 Kushiro National College of Technology HONMA Hirotoshi
01603863 Toyohashi University of Technology *MASUYAMA Shigeru

1 Introduction

Given a simple undirected graph \(G \) with vertex set \(V \) and edge set \(E \), let \(G - u \) be a subgraph induced by the vertex set \(V - u \). We define the distance \(d_G(x, y) \) as the length of the shortest path between vertices \(x \) and \(y \) in \(G \). Chang et al. [1] defined that \(u \in V \) is a hinge vertex if there exist two vertices \(x, y \in V - \{u\} \) such that \(d_{G-u}(x, y) > d_G(x, y) \).

There exists a trivial \(O(n^3) \) sequential algorithm for finding all hinge vertices of a simple graph by a result in Ref. [1], e.g., Theorem 1 in this paper. In general, it is known that more efficient sequential or parallel algorithms can be developed by restricting classes of graphs. For instance, Chang et al. presented an \(O(n + m) \) time algorithm for finding all hinge vertices of a strongly chordal graph [1]. Ho et al. presented a linear time algorithm for all hinge vertices of a permutation graph [4]. Recently, we provided a parallel algorithm, which runs in \(O(\log n) \) time with \(O(n) \) processors, for finding all hinge vertices of an interval graph [3]. In this paper, we shall propose a parallel algorithm, which runs in \(O(n \log n) \) time with \(O(n) \) processors on CREW PRAM (Concurrent-Read Exclusive-Write Parallel Random Access Machine) for finding all hinge vertices of a circular-arc graph [6].

2 Preliminaries

We first illustrate the circular-arc model before defining the circular-arc graph. Suppose that a unit circle \(C \) and a set \(A \) of \(n \) circular-arcs \(A_1, A_2, \ldots, A_n \) along the circumference of \(C \). Each circular-arc \(A_i \) has two endpoints, \textit{left} endpoint \(a_i \) and \textit{right} endpoint \(b_i \), such that \(a_i \) (resp. \(b_i \)) is the last point of \(A_i \) that we encounter when walking along \(A_i \) counterclockwise (resp. clockwise). We denote circular-arc \(A_i \) by \([a_i, b_i] \). All left and right endpoints are labeled clockwise with consecutive integer values \(1, 2, \ldots, 2n \). Without loss of generality, assume that all endpoints of \(n \) circular-arcs are distinct. We also assume that a circular-arc number is assigned to each circular-arc in increasing order of their right endpoints \(b_i \)'s, i.e., \(A_1 < A_2 \) if \(b_1 < b_2 \). The geometric representation described above is called a circular-arc model (CA). Fig. 1 shows a circular-arc model CA, consisting of eleven circular-arcs. A graph \(G \) is a circular-arc graph if there exists a circular-arc set \(A \) such that there is a one-to-one correspondence between the vertices \(i \in V \) and the circular-arc \(A_i \in A \) in such a way that an edge \((i, j) \in E \) if and only if \(A_i \) intersects with \(A_j \) in \(CA \). The circular-arc graph \(G \), corresponding to the circular-arc model CA illustrated in Fig. 1, is shown in Fig. 2.

We cut circular-arc \(CA \) at endpoint \(a_1 \) and next open it out flat. This process changes circular-arcs in \(CA \) to real line segments on the horizontal line in the plane. In particular, a circular-arc \(A_i \) with \(a_i > b_i \) is called a feedback circular-arc. Here, if there is the feedback circular-arc \(A_i = [a_i, b_i] \) in \(CA \), we modify it to \(A_i = [a_i - 2n, b_i] \) and generate an extra circular-arc \(A \cdot [a_i, b_i + 2n] \). The geometric representation obtained by applying the procedure described above is called an extended circular-arc model (ECA). The ECA constructed from the circular-arc model CA illustrated in Fig. 1 is shown in Fig. 3.

In the following, we define some terms used in this paper. We denote by vertex \(i \), throughout the paper, a vertex in \(G \) corresponding to a circular-arc \(A_i \). A set of all vertices adjacent with vertex \(i \) is denoted by \(N(i) \).

We denote by \(M(i) \) the number \(j \) of the largest circular-arc \(A_j \) \((b_j \geq i) \) intersecting with \(A_i \). Similarly, we denote by \(SM(i) \) the number \(j \) of the second largest circular-arc \(A_j \) \((b_j \geq b_i) \) intersecting with \(A_i \). However, let \(M(i) = i \), \(SM(i) = i \), respectively when such a circular-arc \(A_j \) does not exist. Also, \(D(i) = \{ k \mid b_{SM(i)} < k < b_{M(i)} \} \) is defined as a detect set. In
addition, we define represent vertex sets (RVS). Let $u_1 < u_2 < ... < u_m$ be different values among $M(i)$'s, $i \in V$ and we divide V into vertex sets $V_1, V_2, ..., V_n$, where $V_j = \{ i \mid M(i) = u_j \}$ and $V_j \neq \emptyset$. Next, v_j is the smallest vertex among V_j's, which is called represent vertex of V_j. We also define RVS as a set consisting of all vertices v_j, $j = 1, 2, ..., n$.

Table 1 shows $M(i), SM(i), D(i)$ for the extended circular-arc model ECA illustrated in Fig. 3. In this table, RVS is $\{1, 3, 5, 6, 10\}$.

| i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|------|-----|----|---|----|
| M | 6 | b | 3 | 4 | 7 | 8 | 11 | 13 | 15 | 16 | 17 | 19 | 21 | 26 | 29 | | | | | | | | |
| SM | 3 | | 3 | 6 | 6 | 7 | 8 | 9 | 9 | 10 | 10 | 2 | 2 | | | | | | | | | | | |
| D | 8...12 | 8...12 | 14 | 14 | 0 | 17 | 18 | 18 | 18 | 18 | 20 | 21 | 25 | 22...25 | | | | | | | | |

3 Some properties of the hinge vertices in circular-arc graphs

Theorem 1 was due to Chang et al. [1]. It is used to identify the hinge vertices of a simple graph. We apply this theorem for efficiently finding hinge vertices of a circular-arc graph.

Theorem 1 For a graph $G = (V, E)$, a vertex $u \in V$ is a hinge vertex of G if and only if there exist two nonadjacent vertices $x, y \in N(u)$ such that u is the only vertex adjacent with both x and y in G. □

Lemma 1 Vertex u is a hinge vertex of a circular-arc graph G if and only if either of the following two conditions holds in ECA.

1. $A_x < A_y, A_u = A_M(x), a_y \in D(x)$ and $b_M(y) < a_y + 2n$.
2. $A_x < A_y, A_u = A_M(y), a_x + 2n \in D(y)$ and $b_M(x) < a_x$. □

Lemma 2 Assume that x, y are two vertices of a circular-arc graph $G = (V, E)$. We now consider the vertex set V_n such that $V_n = \{ v \mid M(v) = u \}$. Then $D(x) \supseteq D(y)$ for $x, y(x < y) \in V_n$. □

Lemma 3 Let $G = (V, E)$ be a circular-arc graph. Assume that $x, y \in V$ are two vertices in G with $x < y$. Then, either $M(x) = M(y)$ or $D(x) \cap D(y) = \emptyset$. □

We propose a procedure for finding a hinge vertex. Before introducing its formal description, we illustrate it by using the example of Table 1 in detail. We first compute $M(i), SM(i), D(i)$ for $i; 1 \leq i \leq n$, and next obtain a represent vertex set RVS. By Lemma 1-(2), if there exist x and y satisfying $A_x < A_y, A_u = A_M(y), a_x + 2n \in D(y)$ and $b_M(x) < a_y$, if and only if u is a hinge vertex of a circular-arc graph. Assume that there exists k such that $k \in D(v), i \in RVS,$ and $k \in D(v), \quad \text{for} \quad u; 1 \leq v \leq j$. For the example of Table 1, $k = 18, i = 6$ and $j = 9$. We find A_x satisfying $a_x + 2n = 18$, that is, $x = 2$. Finally, we examine whether there exists y satisfying $b_M(y) < a_y$, with $i \leq y \leq j$. For the example of Table 1, $M(x) = 6, b_M(x) = 13 < a_y$ when $y = 9$. Hence, $M(9) = 10$ is a hinge vertex of a circular-arc graph. And by Lemma 2, it suffices to apply $D(i)$ for $i \in RVS$. Also by Lemma 3, it is executed in $O(n)$ time.

Algorithm PHV

Input: The left and right end points $[a_i, b_i]$ in CA.

Output: The set of hinge vertices.

Step 1 (Generation of ECA)

- **for all** $A_i \leq i \leq n$, **in parallel do**
 - If $A_i = [a_i, b_i]$ is a feedback circular-arc then we change A_i into $A_i = [a_i - 2n, b_i]$ and generate an extra circular-arc $A_1 := [a_1, b_1 + 2n]$.

Step 2 (Construction of M_i, SM_i)

- **for all** $A_i, 1 \leq i \leq n$, **in parallel do**
 - Compute $M(i)$, where $M(i)$ is the largest $j(i)$ such that A_j intersects with A_i.
 - Compute $SM(i)$, where $SM(i)$ is the second largest $j(i)$ such that A_j intersects with A_i.

Step 3 (Construction of RVS, and $D(i), i \in RVS$)

- $RVS := \{ i \}$
- **for all** $i, 2 \leq i \leq n$, **in parallel do**
 - If $M(i) > M(i - 1)$ and then $RVS := RVS \cup \{ i \}$.
 - **for all** $i, i \in RVS$ **in parallel do**
 - Compute $D(i) = \{ k \mid b_M(i) < k < b_M(i) \}$.
 - i satisfying $D(i) = \emptyset$ is removed.

Step 4 (Finding all hinge vertices)

- **for all** $D(x), x \in RVS$ **in parallel do**
 - If there exist x and y satisfying $A_x < A_y, A_u = A_M(x), a_x \in D(x)$ and $b_M(y) < a_x + 2n$, then u is a hinge vertex of the circular-arc graph. For all $D(y), y \in RVS$ **in parallel do**
 - If there exist x and y satisfying $A_x < A_y, A_u = A_M(y), a_x + 2n \in D(y)$ and $b_M(x) < a_y$, then u is a hinge vertex of the circular-arc graph.

End of Algorithm

Theorem 2 Given a circular-arc graph G, Algorithm PHV finds the set of all hinge vertices of G in $O(\log n)$ time using $O(n)$ processors on CREW PRAM. □

References

