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1. Introduction

We present techniques for enumerating a sub-problem of the Nonlinear Knapsack problem that
can then be combined with other optimisation techniques in order to solve large Nonlinear or
Multidimensional knapsack problems. .

The Multidimensional Non-linear Knapsack Problem can be defined as:

maximize f(x)= i fi(x;)
i=l

subject to gj(x)=Zgj,(x,.)Sbj for ieM
i=1

x, €K, for ieN
where x=(x,x,,.,x,), M={12,..,m}, K, ={1,2,....,k, } ,and N={1.2,...n}.
If k; =2 Vi, then the problem reduces to a 0/1 Multidimensional Knapsack problem. Both the Non-
linear and Multidimensional knapsack problems are known to be NP-hard and therefore heuristics
are primarily used when solving problems where the number of items is large.

Nakagawa (1990) proposed an approach to solving Non-linear Knapsack Problems using what
was termed the “Modular Approach” (MA). Essentially this approach is an extension of a hybrid
Dynamic Programming/Branch and Bound method. It solves problems by repeatedly fathoming the
current decision space, as in a branch and bound algorithm eliminating branches that will not meet a
preset target value. This reduces the size of the decision space. It then integrates two variables into
a new variable, reducing the overall number of variables in the system, similar to Dynamic
Programming where the new variable represents the state space in the network at a particular level.

The problem that is considered in this paper solves the 0/1 Multidimensional Knapsack problem
repeatedly as a sub-problem of a Non-linear Knapsack problem that has all 0/1 variables except for
one variable, the last variable, that has many different possible states with varying objective and
constraint requirements.

2. Computational Experience

Problem Data

We carried out the approach using the Multi-dimensional Knapsack test problems published by
Chu and Beasley (1998) and available via the world wide web from the OR library
(http://mscmga.ms.ic.ac.uk/jeb/orlib/mknapinfo.html). Problems with a size (number of variables x

number of constraints) 100x5, 250x5 and 100x10 were solved optimally by Chu and Beasley (1998)

using a CPLEX solver. We therefore chose to focus on the next set of 30 problems with 500
variables and 5 constraints. The optimal solutions to these problems were previously unknown.

Computational Results

All problems were solved on a combination of two machines. The MA was run on a Fujitsu Unix
Workstation with 18G RAM for generating the final problem (as the state spaces were generally
below 1,000,000 elements). The enumeration was carried out on Gateway PCs with 1.7Ghz Intel
Pentium 4 processors and a minimum of 128MB memory running Windows Me. The same
computer was used to process the same problem for both enumeration techniques. We used both (1)
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the Constraint Based approach and (2) the State Search approach to enumerate the solution spaces
in order to assess how these approaches compared.

Table 1 shows the optimal values of the 500 variable, 5 constraint problems of Chu and Beasley
(1998). The table shows the problem number, the Optimal objective value, the value previously
found by Chu and Beasley (C&B) and the percentage difference of the Chu and Beasley solution
from the optimal. The next two columns of the table show how many states were in the last
variable for the final MA problem that needed to be enumerated and the total number of variables in
the problem. The next two columns show the number of hours required to enumerate the states
using the Constraint Based approach and the State Search approach respectively. The final column
shows the percentage improvement of the State Search approach over the Constraint Based
Approach. Where there are no entries in the last five columns indicates that the MA: was able to
solve the final problem completely without the aid of either of the enumeration techniques. In all
cases the enumerations were started with a lower bound of zero. This was in order that the times
shown would be worst-case scenarios. If the best- known values were used, then clearly the
processing times would improve.

Problem Objective % of C&B _ Final Problem from MA Constraint  State %
Number QOptimal C&B from Optimal States Variables Time (Hrs) Time (Hrs) Difference
0 120148 120130 0.0150% 844703 25 16.81 10.21 39.3%
1 117879 117837 0.0356% 802008 17 0.19 0.10  453%
2 121131 121109 0.0182% 692654 22 6.07 233 61.6%
3 120804 120798 0.0050% 859695 20 3.88 1.52 60.9%
4 122319 122319 0.0000% 565439 23 1.25 1.39 -11.8%
25 302571 302560 0.0036% 712883 17 0.24 0.09 63.6%

26 301339 301322 0.0056%
27 306454 306430 0.0078%
28 302828 302814 0.0046%
29 299910 299904 0.0020% 992552 21 4.44 3.43 22.8%

“Table 1. Optimal Solutions to Chu and Beasley (1998) 500 variable, 5 constraint problems

From the table we can conclude that computational times for each problem varied greatly,
depending on the number of variables in the problem and the problem itself. The differences in the
computational times between the two searches are also of interest. In most cases the State Search
approach clearly dominates the Constraint Based Search with computational times that are
significantly faster. The average percentage speed increase of the State Search Approach over the
Constraint Based Approach is 42%.
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