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1 Introduction

The study of page replacement algorithms has a long
history. It is still continued in other environments,
such as web caching, distributed IP paging. Many
replacement algorithms have been proposed over the
years, including LRU, which evicts the least recently
used page, FIFO, which evicts the earliest loaded page.
Each performance has been evaluated on several an-
alytical models, independent reference model (IRM),
LRU stack model (LSM), or using competitive anal-
ysis. The models are too simple to reflect an actual
program behavior, and some of them are suitable for a
particular performance but others are not. For exam-
ple, LRU and FIFO are equivalently evaluated in the
competitive analysis[2] in contrast to our experience.
Though their miss ratios can be explicitly derived from
the IRM[1], it is difficult to prove the superiority of
LRU. Thus we develop a hybrid model of IRM and
LSM and show that an indirect performance measure,
expected staying time, is useful on the model.

2 Expected Staying Time

The system under consideration has a two-level mem-
ory consisting of a fast memory of small size m, a
large slow memory, and an input request history. Let
U = {1,2,...,n} be a set of all pages such that the
page ¢ is referenced with probability ¢g;. A history
h = r1,re,...,7¢,..., where r; € U, is a reference
string. If the requested page is in the fast memory,
i.e., a hit occurs, then the reference incurs little cost.
Otherwise, a miss occurs, then the reference is much
more expensive.

The memory and the page can be modeled by a
stack with n cells S = (s1,82,...,8,) and an item
i € U moving in S, respectively. We consider the ran-
dom walk of an item 7 starting from s; in the stack,
where non-increasing reference probabilities are asso-
ciated with the cells, called a stack probability. Notice
that the item 1 is referenced with probability g; (like
IRM) and other items, whatever they are arranged,
are referenced in accordance with the stack probability
(like LSM). Thus our model is a hybrid model of IRM
and LSM. An ezpected staying time ESTX (i) of item
1 is defined to be the expected time interval that the

item ¢ stays in the fast memory Sy.st = (51,52,-..,5m)
under a paging scheme X. Let e;(i) be the expected
time of item ¢ required for passing from the j-th cell
to the (5 + 1)-st cell. Using it, we can represent

ESTX(i) =) e;(i).

i=1
Let MX(t) be the contents of the fast memory at
time t when using a paging scheme X. In the long run,
the evolution of {MX(t)} is described by a finite er-
godic Markov chain. Thus there exist stationary prob-
abilities for states {M*X} and also Pr{i € M*}. Since
the expected return time to the state {i ¢ M X} is the

inverse of Pr{i ¢ MX}, we have
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We denote EX (i) = Pr{i ¢ MX} for simplicity. In
our model, the reference probability ¢; of item 1 is in-
dependent of whether it is contained in Sj.s¢ or not,
leading to the following definition.

Definitiom 1 A hit ratio HX for paging scheme X is
defined to be

HX =% g Pr{i e M*}. (1)
i€U
0
We can derive the following theorem.
Theorem 1 If
> a:(BX (i) - EY(3)) > 0 (2)

ieu
holds, we have HX < HY .

Proof Since we can calculate

> a(EX () - BV (i))

ieU
= S a({1/(1+q - EST*()) - 1/(1 + ¢: - EST¥ (i))})
iev
= > a(Pr{ig M¥} - Pr{ig M"})
ielU
= Y a(Pr{ie M} - Pr{ie MX}),
ievU



we obtain HX < HY from (1). O

Now we evaluate the schemes FIFO and LRU in
terms of the expected staying time. Suppose that the
reference probability of the i-th item is determined by
a truncated geometric distribution ¢; = ap~!, where
a= 117_%- and 0 < p < 1. Let c;x be the stack prob-
ability of the j-th cell s; for a paging scheme X, and
CX the sum of the stack probability from s; through
Sm for X.

Lemma 1 For the scheme FIFO, the expected passing
time e;(i) of the i-th item is

. 1
ej(i) = 14 cFTFO _CFIFO _ gpi-1°
7 m

0

Lemma 2 For the scheme LRU, the expected passing
time e;(1) of the i-th item is

H?:](l —ap~l - CIL_};U)

e;(i) =

where we define H,l=2(any ezpression) = 1. 0

Example 1 Suppose that there are 3 items =, y, z, and
that 2 items are in the fast memory. For example,
(z,y) means z and y are in the fast memory and x is
in the top cell. For FIFO, there are 8 states:

(z,9),(2,2), (y,2) or (y,2),(2,9),(5,2),

Let p. = a, py = ap, p: = ap® be access probabilities,
which determines transition probabilities as depicted
in Figure 1. For example, let P, be the stationary
probability of (z,y).
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Figure 1: State transition diagrams

Let wF1FO = (P,y, P.y, P,.), then

' 1-ap® ap?® 0
o FIFO _ [ FIFO 0 l-ap ap
a 0 l1-a

Solving this equation with P,y + P,, + P,. = 1, we
have

aFIFO — (Pzy, Pz, Py:) = (a,ap, ap?).
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The stack probabilities c; FIFO gre

and ¢

Cf‘IFO ny'pz+Pz:"pz+Pz‘Py=a2(1+2p3)

Co = ny'py+Pz:c'pz+Pyz'pz:a2(2p+p4)
Pz‘y'pz"'Pz: 'py+Py2'px =3a2p2
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We can similarly derive the stack probabilities for LRU.
Using the expression (2), we obtain the following graph,
showing that LRU outperforms FIFQO. O

gFIFO _ gLRU

Figure 2: Comparison of LRU and FIFO

3 Conclusion

We proposed a new concept, an expected staying time,
and investigated its relation to the hit ratio of paging
schemes. The expected staying time is defined on a hy-
brid model, consisting of IRM and LSM. In addition,
we verified its usefulness by applying to the compari-
son of FIFO and LRU.
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