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1. Introduction

Economic manufacturing quantity (EMQ) models for
unreliable manufacturing systems have been developed
in the literature even for general failure and general re-
pair (corrective) time distributions [1,2]. However, in
these studies, preventive maintenance (PM) has not been
considered in a general way. Further, the efforts have
been made to derive the production and maintenance
policies for inflexible manufacturing systems, where the
machine capacity is pre-determined. The purpose of
this article is to formulate a generalized EMQ model
for a flexible unreliable manufacturing system in which
(i) the time to machine failure and repair (corrective and
preventive) times follow general probability distributions
and (ii) the machine failure rate is dependent on the pro-
duction rate.

2. The EMQ Model
Nomenclature:

X: non-negative i.i.d. random variable denoting time
to machine failure; Fx(t): failure time distribution;
G1(l1): corrective repair time distribution; Gy(l2): pre-
ventive repair time distribution; p (> 0): production rate
(decision variable); (> 0): maximum production rate
of the machine; d (< p): demand rate; Cy (> 0): set up
cost; C1 (> 0): corrective repair cost per unit time; Cs (<
C1): preventive repair cost per unit time; C; (> 0): hold-
ing cost per unit product per unit time; C, (> 0): short-
age cost per unit product; @ (> 0): order quantity (de-
cision variable).

Model Formulation:

Consider a single-unit single-item production system
in which at most one failure can occur in a production
cycle. The process starts at time { = 0 with the aim
of producing a lot Q. If no failure occurs until time
t = @/p then the process is stopped and PM is carried
out. If, however, the machine fails before producing @
units then the corrective repair action is started imme-
diately. During machine repair, the demand is met first
from the accumulated inventory. If there is sufficient
stock to meet the demand during machine repair then
the next production starts when the on-hand inventory
is exhausted. Shortages, if occur, are not met up after
machine repair. To avoid an unrealistic decision mak-
ing, we assume that Q < Q < Q@ , where Q and Q
are lower and upper limits of Q, respectively. The mean
time length of a cycle and the expected total cost for one
cycle are given by
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respectively. By the well-known renewal reward theo-
rem, the expected cost per unit time in the steady state
is given by

C(p,Q) = lim
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The problem of our interest is

(P1) Minimize C(p,Q), subject to
hl(pr) Ep—d> o, hZ(p’Q) Eﬁ_‘? >0,
hs(p,@)=Q-Q >0, hy(p,Q)=Q~-Q >0.

3. Development of Solution Algorithms:

If p,Q and Q are specified in advance by the deci-
sion maker then a local optimal solution (p*, Q") must
satisfy the above inequality constraints and their corre-
sponding multipliers m;, mq, m3 and my exist, satisfying
the Kuhn-Tucker necessary conditions:
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mi(p—d)=0, my(P-p)=0, m3(Q—-Q)=0,
m4(Q_Q)=01p_d>0> 5‘—17203 Q_QZO»
Q-Q>0, mi >0 for i =1,2,3,4. Nevertheless,
we can not guarantee analytically the existence of the
global minimum, as the convex property of the objective
function can not be proved. If (p*,Q*) is an interior
point in the feasible region D = {d <p <p, @ <Q <
Q} then the generalized Newton’s method can be applied
to find it by solving the non-linear equations:
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The associated Hessian matrix of equation (3) is

o 9¢
8p aQ

p 9Q

Defining U(p, Q) = 9(p, Q) (0¢/9Q) — ¢(p, Q) (0%/9Q)
computer algorithm for (p*, @*) can be outlined as given
below.

Algorithm 1:

Step 0. Input the model parameters and the accuracy
parameter € (> 0).

Set (p, Q) as a candidate solution of simul-
taneous equations (3).

Set | H |, the determinant of the Hessian
matrix at (p, Q).

If | H| = 0 then go to Step 7; otherwise,
h=U®Q)/|H| k= V(P,Q)/lHl

If h and k are both less than e then go to Step
6; otherwise, go to Step 5.

Set p=p+h, Q= Q+k and go to Step 2.
Ifd<p<pandQ<Q < Q then assign p* = p
and Q*
exists to minimize C(p,
Step 7. The method fails.

H=

Step 1.
Step 2.
Step 3.
Step 4.

Step 5.
Step 6.
= Q. Otherwise, no interior point of D
Q). Stop.

Alternatively, we can apply the log-barrier method (e.g.,
see Bazaraa and Shetty [3]) to solve a sequence of un-
constrained minimization problems of the form :

p, Q) —H B(pv Q) (4)

for a sequence of values of u = uk | 0, where the barrier
function is given by

Minimize Cy(p, Q) = C(

py Q) Z ln{h](p, Q)}

ij=1

The limit as u = px | 0 of any convergent sequence
{(p, Q) : p > 0} is a local optimal solution of the problem
(P1) and furthermore, uB(p,Q) | 0 as p | 0*. The
optimality conditions when minimizing C,(p, Q) are

VC(p,Q) - gh(p,Q)Vh i®,Q)=0, (5)

where V = (8/8p,8/0Q) and 0 = (0,0). Based on the
log-barrier method, we propose Algorithm 2.

Algorithm 2:

Step 0. Input the model parameters, the accuracy

parameter € (> 0), the barrier parameter po (>
0) and the reduction parameter 6 (0 < 6 < 1).

Step 1. Set u — o and (p, Q) as a candidate solution
of (4).

Step 2. Use Newton’s method to calculate an approxi-
mation of the new target point (5, Q) from (5).

Step 3. If u < € then stop after assigning p* = p and
Q* = Q. Otherwise, set  «— 8 p; goto Step 2.

If (p*, @*) is on the boundary of D, then the problem re-
duces to an one dimensional optimization problem which
can be handled easily.

4. Numerical Example

We consider the exponential failure distribution [4]:
Fx(t) = 1 — exp{—A(p)t}, t > 0, in which the fail-
ure rate A(p) = ap?; a, B being real positive constants.
A(p) is a concave (convex) function of p, for 8 < 1
(8 > 1). Since the maximum production rate (p) of
the machine is pre-assumed, we calculate the optimal
policy for only 0 < 8 < 1. Let the parameter values be:
d =50, C; = 0.5, Cy = 1.25, Cy = 500, C; = 250, Cy =
50,41 =4, pp =10, =03, §=0005, § =107, e =
107%,Q = 300, Q@ = 900 and p = 300. Using Algorithm
1, a local optimal solution is obtained as p* = 85.19 and
Q* = 693.06 which are also found as the target values in
Algorithm 2 (log-barrier method). See Table 1.

Table 1 Convergence of the solution sequence
in log-barrier method.

U P Q Cp(ﬁ, Q) ll‘B( AaQ)

10% | 167.29 | 579.05 | -1945.68 | 2105.5623

10! | 128.93 | 536.85 -53.57 208.7288

10° | 92.56 | 622.13 | 133.11 20.4879

10-1 | 86.20 | 679.61 151.47 2.0289
102 | 85.30 | 691.50 153.30 0.2024
1073 | 85.20 | 692.87 153.48 0.0202
10~4 | 85.19 | 693.01 | 153.50 0.0020
10~5 | 85.19 | 693.02 153.50 0.0002
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