INTRODUCTION

Primal dual algorithm of linear programming problems was first applied to the network flow problem by Ford and Fulkerson [2] [3]. In 1959, Kelley [1] pointed out that this is nothing but a method for solving parametric programming problem. In § 1, we shall describe the primal dual method of parametric programming in a general fashion. The content is essentially the same as that of [1], except for that the simplex method and the concept of basis are avoided, as they are not necessary for our discussions and we treat the “general form” of the linear programming. This method was applied by Kelley [4] and Fulkerson [6] independently of each other, to a problem in planning and scheduling, which is now called CPM (Critical Path Method).

On the other hand, in 1960, Iri studied the network flow problem from an entirely different viewpoint. He developed a general algebraic and topological theory of electric circuit and noticed the analogy of the transportation problem with the circuit.

A few important points should be noted about Iri’s theory. The first of them is his methodology. In his theory, the input voltage and total input current are increased alternatively starting from 0 so that the solutions of problems are found out. A technique called “θ-matrix method” used at the voltage increasing steps forms the most important part in [5]. Iri’s alternative increasing steps are regarded as an illustration of a method which is applicable to the general problem of parametric
In §2 we introduce this method, under the name “double parameterization method”, and show that it is as equally efficient as the method in §1 in the sense that the number of iterations to reach at a parameter value λ is the same for both the methods. In general, in formulating a parametric programming problem, various ways are possible according as which variable is taken as a parameter. For instance, if the input voltage is taken as the parameter of the network flow problem we get Ford and Fulkerson’s method. A different approach, of course, is obtained if the total flow is taken as a parameter. In the former, the maximal flow is found by a labeling method which is well-known as one for solving the restricted primal problem, while in the latter, the maximal input voltage is found by the Θ-matrix method. Just as the labeling method in Fulkerson’s theory gives the optimal solution of not only the restricted primal problem but also its dual problem, Θ-matrix method gives the optimal solutions of both the restricted primal and the dual problems simultaneously (this fact is not remarked in [5]). These two methods are discussed in §3.

In §4, we apply Kelley-Fulkerson’s and Iri’s methods to the problem of CPM in parallel to §3. Iri’s method in CPM has not yet been published. Iri himself, however, was aware of the possibility of the application as early as in 1961 and wrote an ALGOL program at the RAND Institute of JUSE, Tokyo. It is shown in §5 that if we apply the primal dual method directly to the problem with many parameters, a certain very strong condition on the solutions of restricted primal problems is required.

However, if we regard the network flow problem with many sources as a multi-parametric programming problem with many input flows as parameters, the condition above stated is fulfilled. Thus it is the third feature of Iri’s method that his Θ-matrix method can be applied to the network flow problem as a multi-parameter programming, as discussed in §6.

Transportation problem of Hitchcock-type turns quite naturally to be a multi-parametric programming, for which a numerical example...
solved by the method in § 6 is attached in § 7.

§ 1. PRIMAL DUAL METHOD OF PARAMETRIC PROGRAMMING
IN GENERAL FORM

Let $P|\lambda$ and $D|\lambda$ denote respectively the following parametric programming problem and its dual problem.

\[
\begin{align*}
P|\lambda & \quad x_j \geq 0 \quad \text{if } j \in S \quad (P1) \\
& \quad \sum_j a_{ij}x_j \geq b_i \quad \text{if } i \in T, \\
(\text{or} & \quad \sum_j a_{ij}x_j - u_i = b_i, \quad u_i \geq 0, \quad \text{if } i \in T,) \quad (P2) \\
& \quad \sum_j a_{ij}x_j = b_i, \quad \text{if } i \notin T, \quad \text{minimize } f(x) = \sum_j (c_j + \lambda d_j)x_j, \\
\end{align*}
\]

\[
\begin{align*}
D|\lambda & \quad \sum_i a_{ij}y_i \leq c_j + \lambda d_j, \quad \text{if } j \in S, \quad (D1) \\
(\text{or} & \quad \sum_i a_{ij}y_i + w_j = c_j + \lambda d_j, \quad w_j \geq 0, \quad \text{if } j \in S,) \quad (D2) \\
& \quad \sum_i a_{ij}y_i = c_j + \lambda d_j, \quad y_i \geq 0, \quad \text{if } i \in T, \quad \text{maximize } g(y) = \sum_i y_i b_i, \\
\end{align*}
\]

where i ranges over the set of integers $\{1, 2, \ldots, m\}$ and j over $\{1, 2, \ldots, n\}$, and T (resp. S) is a given subset of $\{1, 2, \ldots, m\}$ (resp. $\{1, 2, \ldots, n\}$).

1.1. Our aim is to trace the optimal solution of $P|\lambda$ or $D|\lambda$, when λ increases from λ_0, being given the optimal solution of $P|\lambda_0$ or $D|\lambda_0$.

Let (x_j, u_i) and (y_i, w_j) be the optimal solutions of $P|\lambda$ and $D|\lambda$ respectively and let us define the restricted primal $RP|\lambda$ and its dual restricted problem $RD|\lambda$, based on (y_i, w_j), as follows.

\[
\begin{align*}
RP|\lambda & \quad x_j \geq 0, \quad \text{if } j \in S, \quad (RP1) \\
\end{align*}
\]
Primal Dual Method of Parametric Programming

\[
\begin{align*}
\sum_{j} a_{ij} x_j &\geq b_i, & \text{if } i \in T, \\
(\text{or } \sum_{j} a_{ij} x_j - u_i &= b_i, \ u_i \geq 0, \text{ if } i \in T',) \text{ (RP2)} \\
\sum_{j} a_{ij} x_j &= b_i, & \text{if } i \notin T \\
\sum_{j \in S} x_j w_j &= 0, \\
\sum_{i \in T} u_i y_i &= 0,
\end{align*}
\]

minimize \(f_i(x) = \sum_{j} d_j x_j. \) \(\text{(RP4)} \)

\[\text{RD} | \lambda \]

\[
\begin{align*}
\sum_{i} a_{ij} \sigma_i &\leq d_j, \text{ if } w_j = 0, \text{ and } j \in S, \\
\sum_{i} a_{ij} \sigma_i &= d_j, \text{ if } j \notin S \text{ (RD1)} \\
\sigma_i &\geq 0, \text{ if } y_i = 0 \text{ and } i \in T, \text{ (RD2)} \\
\maximize \ h(\sigma) = \sum_{i} a_i b_i. \text{ (RD3)}
\end{align*}
\]

Proposition 1.1.

A feasible solution \((x_j, u_i)\) of \(P | \lambda\) is optimal, if and only if it is a feasible solution of \(\text{RD} | \lambda \).

Proof.

If \((x_j, u_i)\) resp. \((y_i, w_j)\) is a solution of \(P | \lambda\) resp. \(\text{D} | \lambda \), then we have easily \(\sum_{j} (\epsilon_j + \lambda d_j) x_j = \sum_{i} b_i y_i + \sum_{j \in S} w_j x_j + \sum_{i \in T} u_i y_i \), and \(\sum_{j \in S} w_j x_j \geq 0, \ \sum_{i \in T} u_i y_i \geq 0 \).

By the Duality Theorem, \((x_j, u_i)\) is optimal, if and only if \(\sum_{j \in S} w_j x_j = 0 \) and \(\sum_{i \in T} u_i y_i = 0 \), that is, \((x_j, u_i)\) is a feasible solution of \(\text{RD} | \lambda\).

Proposition 1.2.

If \((y_i')\) is a feasible solution of \(\text{D} | \lambda + \theta \) for some \(\theta > 0 \), and if \((\sigma_i)\) satisfies \((y_i') = (y_i) + \theta (\sigma_i) \), then \((\sigma_i)\) is a feasible solution of \(\text{RD} | \lambda \).

Proof.

By our assumption, \((y_i + \theta \sigma_i)\), is a feasible solution of \(\text{D} | \lambda + \theta \).

So that,
\[\sum_i a_{ij}(y_i + \theta \sigma_i) \leq c_j + (\lambda + \theta) d_j \quad \text{for} \quad j \in S, \quad (1.1) \]
\[\sum_i a_{ij}(y_i + \theta \sigma_i) = c_j + (\lambda + \theta) d_j \quad \text{for} \quad j \notin S, \quad (1.2) \]
\[x_i + \theta \sigma_i \geq 0 \quad \text{for} \quad i \in T \quad (1.3) \]

From (1.1) and (1.2)
\[(\sum_i a_{ij} \sigma_i - d_j) \theta \leq w_j \quad \text{for} \quad j \in S, \quad (1.4) \]
\[(\sum_i a_{ij} \sigma_i - d_j) \theta = 0 \quad \text{for} \quad j \notin S. \quad (1.5) \]

Hence \(\sigma_i \) is a feasible solution of RD\(|\lambda| \).

Proposition 1.3.

Let \((\sigma_i) \) be a feasible solution of RD\(|\lambda| \) and put \((\beta_j) = (d_j - \sum_i a_{ij} \sigma_i) \), then \((\gamma + \theta \sigma_i) \) is a feasible solution of D\(|\lambda + \theta| \) \((\theta > 0)\), if and only if \(0 < \theta \leq \theta_0 \) where \(\theta_0 \) is defined as follows.

\[\theta_1 = \begin{cases} \min \left(-w_j / \beta_j ; \; \beta_j < 0, \; j \in S \right) & \text{if there exists } j \text{ such that } \beta_j < 0, \\ \infty & \text{otherwise,} \end{cases} \]
\[\theta_2 = \begin{cases} \min \left(-y_i / \sigma_i ; \; \sigma_i < 0, \; i \in T \right) & \text{if there exists } i \text{ such that } \sigma_i < 0, \\ \infty & \text{otherwise,} \end{cases} \]
\[\theta_0 = \min (\theta_1, \theta_2). \]

Proof.

Note that \(\theta_1 > 0 \) and \(\theta_2 > 0 \), because \(\beta_j < 0 \) implies \(w_j > 0 \) for \(j \in S \), and \(\sigma_i < 0 \) implies \(y_i > 0 \) for \(i \in T \), by RD1 and RD2. Now from the proof of Proposition 1.2, \((\gamma_i + \theta \sigma_i) \) is a feasible solution of D\(|\lambda + \theta| \), if and only if (1.3) and (1.4) hold, that is if and only if \(\theta \leq \theta_1 \) and \(\theta \leq \theta_2 \).

Proposition 1.4.

Suppose that \(0 < \theta \leq \theta_0 \), where \(\theta_0 \) is defined as in Proposition 1.3, and that \((x_j) \) is a solution of RP\(|\lambda| \). Then \((x_j) \) resp. \((y_i + \theta \sigma_i) \) is an optimal feasible solution of P\(|\lambda + \theta| \) resp. D\(|\lambda + \theta| \), if and only if \((x_j) \) resp. \((\sigma_i) \) is an optimal solution of RP\(|\lambda| \) resp. RD\(|\lambda| \).

Proof.

Proposition 1.1~1.3, together with the following relation and Duality

\[\sum_i a_{ij} \sigma_i \leq d_j \quad \text{for} \quad j \in S, \quad (1.6) \]
\[\sum_i a_{ij} \sigma_i = d_j \quad \text{for} \quad j \notin S, \quad (1.7) \]
\[x_i + \sigma_i \geq 0 \quad \text{for} \quad i \in T \quad (1.8) \]
Theorem imply the proposition.

\[
\begin{align*}
 f(x) &= \sum_j (c_j + (\lambda + \theta)d_j)x_j = \sum_i b_i(y_i + \theta \sigma_i) = g(y + \theta \sigma)
 \\
 f_i(x) &= \sum d_j x_j = \sum \sigma_i b_i = h(\sigma).
\end{align*}
\]

Proposition 1.5.

If the optimal solutions of \(P|\lambda\) and \(D|\lambda\) exist for some \(\lambda\), the necessary and sufficient condition for the existence of the optimal solutions of \(P|\lambda'\) and \(D|\lambda', \lambda' > \lambda\), is the existence of the optimal solutions of \(RP|\lambda\) and \(RD|\lambda\).

Proposition 1.6.

An optimal solution of \(RP|\lambda\) is a feasible solution of \(RP|\lambda + \theta\) where \(0 < \theta \leq \theta_\theta\).

Proof.

Let \((x_j, u_i)\) resp. \((\sigma_i)\) be the optimal solution of \(RP|\lambda\) resp. \(RD|\lambda\), then \((y_j', w_j')\) defined by

\[
\begin{align*}
 y_j' &= y_j + \theta \sigma_j, \\
 w_j' &= w_j + \theta \beta_j \quad \text{for} \quad j \in S,
\end{align*}
\]

is the optimal solution of \(D|\lambda + \theta\). For, from D1 with \(\lambda + \theta\)

\[
\sum_i a_{ij}(y + \theta \sigma_i) + w_j' = c_j + (\lambda + \theta)d_j, \quad \text{for} \quad j \in S.
\]

To prove that \((x_j, u_i)\) is a feasible solution of \(RP|\lambda + \theta\), it suffices to show that

\[
\begin{align*}
 \sum_{j \in S} x_j w_j' &= 0, \quad \text{by (1.6)} \\
 \sum_{i \in T} u_i y_i' &= 0.
\end{align*}
\]

Now

\[
\sum_{j \in S} x_j w_j' = \sum_{j \in S} x_j (w_j + \theta \beta_j)
\]

\[
= \sum_{j \in S} x_j w_j + \theta \sum_{j \in S} x_j \beta_j
\]

\[
= \theta \sum_{j \in S} x_j \beta_j
\]
110

Reijiro Kurata

and

\[
\sum_{i \in T} u_i y_i' = \sum_{i \in T} u_i (y_i + \theta \sigma_i)
\]

\[= \theta \sum_{i \in T} u_i \sigma_i.
\]

While for an optimal solution \((x_j, u_i)\) resp. \((\sigma_i)\) of \(\text{RP}|\lambda\) resp. \(\text{RD}|\lambda\), we have \(\sum_{j \in S} x_j \beta_j = 0\) and \(\sum_{i \in T} u_i \sigma_i = 0\) because from \(\text{RP}1-3\) and \(\text{RD}-2\),

\[
\sum_{j \in S} d_j x_j = \sum_{i \in T} \sigma_i b_i + \sum_{i \in T} \sigma_i u_i + \sum_{j \in S} \beta_j x_j
\]

and

\[
\sum_{i \in T} \sigma_i u_i = \sum_{i \in T} \sigma_i u_i \geq 0, \quad \sum_{j \in S} \beta_j x_j = \sum_{j \in S} \beta_j x_j \geq 0
\]

therefore, \(\sum_{i \in T} \sigma_i u_i = 0\) and \(\sum_{j \in S} \beta_j x_j = 0\) by the Duality Theorem.

Thus we can formulate the following procedure to solve \(\text{P}|\lambda\) or \(\text{D}|\lambda\).

1. Start with an optimal feasible solution \((x_j, u_i)\) resp. \((\sigma_i)\) of \(\text{P}|\lambda\) resp. \(\text{D}|\lambda\) for some \(\lambda' > \lambda\).

2. Construct \(\text{RP}|\lambda\) and \(\text{RD}|\lambda\) making use of \((y_i, w_j)\).

2a) If there is no optimal solution of \(\text{RP}|\lambda\) and \(\text{RD}|\lambda\) (e.g. \(\text{RP}|\lambda\) has no bounded solution) then, there exists no optimal solution of \(\text{P}|\lambda'\) and \(\text{D}|\lambda'\) for \(\lambda' > \lambda\). In this case, give up the procedure.

2b) When we can get optimal solutions \((x_j, u_i)\) resp. \((\sigma_i)\) of \(\text{RP}|\lambda\) resp. \(\text{RD}|\lambda\), put \(\beta_j = d_j - \sum_{i} a_{ij} \sigma_i\),

\[
\theta_1 = \begin{cases}
\min (-w_j/\beta_j; \beta_j < 0, j \in S), & \text{if there exists } j \in S \text{ such that } \beta_j < 0, \\
\infty, & \text{otherwise},
\end{cases}
\]

\[
\theta_2 = \begin{cases}
\min (-y_i/\sigma_i; \sigma_i < 0, i \in T), & \text{if there exists } i \in T \text{ such that } \sigma_i < 0, \\
\infty, & \text{otherwise}
\end{cases}
\]

and

\[
\theta_0 = \min (\theta_1, \theta_2).
\]

3.

3a) If \(\theta_0 = \infty\), then \((x_j, u_i)\) resp. \((y_i + \theta \sigma_i, w_j + \theta \beta_j)\) is the optimal
Primal Dual Method of Parametric Programming

solution of $P|\lambda+\theta$ resp. $D|\lambda+\theta$ for any $\theta>0$. Thus, the procedure is terminated.

3b) If $\theta_0<0$ then (x_j, u_i) resp. $(y_i+\theta_0 x_i, w_j+\theta_0 \beta_j)$ is an optimal solution of $P|\lambda+\theta_0$ resp. $D|\lambda+\theta$. In this case return to step 2 (and here, Proposition 1.6 is very useful), and continue the process.

1.2. Next we shall get the optimal solution of $P|\lambda'$ or $D|\lambda'$, $\lambda'<\lambda$, starting with the optimal solution of $P|\lambda$ and $D|\lambda$.

This time we consider the following RP'|λ and RD'|λ.

RP'|λ
\begin{align*}
x_j &\geq 0, & \text{if } j \in S, \\
\sum_j a_{ij} x_j &\geq b_i, & \text{if } i \in T, \\
\text{(or } \sum_j a_{ij} x - u_i = b_i, \ u_i \geq 0, & \text{if } i \in T, \text{)}
\end{align*}

(RP1)

\begin{align*}
\sum_j x_j w_j &= 0, \\
\sum_i u_i y_i &= 0,
\end{align*}

(RP3)

maximize \(f_i(x) = \sum_j d_j x_j, \) \hspace{1cm} (RP4)

RD'|λ
\begin{align*}
\sum_i a_{ij} \sigma_i &\geq d_j, & \text{if } w_j = 0 \text{ and } j \in S, \\
\sum_i a_{ij} \sigma &= d_j, & \text{if } j \notin S,
\end{align*}

(RD'1)
\begin{align*}
\sigma_i &\leq 0, & \text{if } y_i = 0 \text{ and } i \in T, \\
\minimize h(\sigma) &= \sum_j \sigma_i b_i. \hspace{1cm} \text{(RD'3)}
\end{align*}

In this case θ_1, θ_2 and θ_0 are defined as follows.

\[\theta_1 = \begin{cases}
\min w_j/\beta_j, & \text{if there exists } j \in S \text{ such that } \beta_j > 0, \\
\beta_j > 0 & \infty, \text{ otherwise,}
\end{cases} \]
\[\theta_2 = \begin{cases} \min \frac{y_i}{\sigma_i}, & \text{if there exists } i \in T \text{ such that } \sigma_i > 0, \\ \infty, & \text{otherwise}, \end{cases}\]

\[\theta_0 = \min (\theta_1, \theta_2).\]

Moreover, for \(\theta, 0 < \theta \leq \theta_0\), \((x_j, u_i)\) resp. \((y_i - \theta \sigma_i, w_j - \theta \beta_j)\) is an optimal solution of \(P|\lambda - \theta\) resp. \(D|\lambda - \theta\).

\section*{§ 2. A METHOD OF DOUBLE PARAMETRIZATION}

Again, we consider \(P|\lambda\) and \(D|\lambda\), and now we introduce a new variable \(\mu\) in \(P|\lambda\).

\[P|\lambda\]
\[
x_j \geq 0, \quad \text{if } j \in S \quad (P1)
\]
\[
\sum_j a_{ij}x_j \geq b_i, \quad \text{if } i \in T
\]

(or \[
\sum_j a_{ij}x_j - u_i = b_i, \quad u_i \geq 0, \quad \text{if } i \in T\),
\]
\[
\sum_j a_{ij}x_j = b_i, \quad \text{if } i \notin T,
\]
\[
-\sum_j d_jx_j = \mu, \quad (P3)
\]

minimize \(f(x, \mu) = \sum_j c_jx_j - \lambda \mu.\) \quad (P4)

\[D|\lambda\]
\[
\sum_i a_{ij}y_i \leq c_j + \lambda d_j, \quad \text{if } j \in S, \quad (D1)
\]

(or \[
\sum_i a_{ij}y_i + w_j = c_j + \lambda d_j, \quad w_j \geq 0, \quad \text{if } j \in S,)
\]
\[
\sum_i a_{ij}y_i = c_j + \lambda d_j, \quad \text{if } j \notin S,
\]
\[
y_i \geq 0, \quad \text{if } i \notin T, \quad (DT')
\]

maximize \(g(y) = \sum_j b_iy_i.\)

\[RP|\lambda\]
\[
x_j \geq 0, \quad \text{if } j \in S, \quad (RP1)
\]
Primal Dual Method of Parametric Programming

\[
\sum_j a_{ij}x_j \geq b_i, \quad \text{if } i \in T, \quad \text{(RP1)}
\]

(or \(\sum_j a_{ij}x_j - u_i = b_i, \quad u_i \geq 0, \quad \text{if } i \in T,\))

\[
\sum_j a_{ij}x_j = b_i, \quad \text{if } i \not\in T, \quad \text{(RP2)}
\]

\[-\sum_j d_jx_j = \mu, \quad \text{(RP3)}
\]

\[
\sum_{j \in S} x_jw_j = 0, \quad \text{(RP4)}
\]

\[
\sum_{i \in T} u_iy_i = 0, \quad \text{(RP4)}
\]

minimize \(-\mu, \quad \text{(RP5)}
\]

\[
\sum_i a_{ij}\sigma_i \leq d_j, \quad \text{if } w_j = 0 \text{ and } j \in S, \quad \text{(RD)}
\]

\[
\sum_i a_{ij}\sigma_i = d_j, \quad \text{if } j \not\in S, \quad \text{(RD1)}
\]

\[
\sigma_i \geq 0, \quad \text{if } y_i = 0 \text{ and } i \in T, \quad \text{(RD2)}
\]

maximize \(h(\sigma) = \sum_i b_i\sigma_i. \quad \text{(RD3)}
\]

Now in \(P|\lambda\), we regard \(\mu\) as a parameter, and consider the following problem

\[
D^*|\mu
\]

\[
x_j \geq 0, \quad \text{if } j \in S, \quad \text{(D*1)}
\]

\[
\sum_j a_{ij}x_j \geq b_i, \quad \text{if } i \in T, \quad \text{(D*2)}
\]

(or \(\sum_j a_{ij}x_j - u_i = b_i, \quad u_i \geq 0, \quad \text{if } i \in T,\))

\[
\sum_j a_{ij}x_j = b_i, \quad \text{if } i \not\in T, \quad \text{(D*3)}
\]

\[-\sum_j d_jx_j = \rho, \quad \text{(D*3)}
\]

minimize \(f^*(x) = \sum_j c_jx_j, \quad \text{(D*4)}
\]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
The primal problem $\text{P}^*|\mu$ which is the dual of $\text{D}^*|\lambda$ is defined as follows. Here, λ is regarded as a variable corresponding to (D*3).

$\text{P}^*|\mu$

\[
\sum_i a_{ij}y_i \leq c_j + \lambda d_j, \quad \text{if } j \in S,
\]
\[
\sum_i a_{ij}y_i = c_j + \lambda d_j, \quad \text{if } j \notin S,
\]
\[
y_i \geq 0, \quad \text{if } i \in T,
\]
maximize $g^*(y, \lambda) = \sum_i y_ib_i + \mu \lambda$. \hspace{1cm} (P*1)

$\text{RP}^*|\mu$

\[
\sum_i a_{ij}y_i + w_j = c_j + \lambda d_j, \quad w_j \geq 0, \quad \text{if } i \in S,
\]
\[
\sum_i a_{ij}y_i = c_j + \lambda d_j, \quad \text{is} \quad j \in S,
\]
\[
y_i \geq 0, \quad \text{if } i \in T,
\]
maximize $\sum_j w_jx_j = 0$, \hspace{1cm} (RP*1)
maximize $\sum_i \gamma_iu_i = 0$, \hspace{1cm} (RP*2)
maximize λ. \hspace{1cm} (RP*3)

$\text{RD}^*|\mu$

\[
\xi_j \geq 0, \quad \text{if } x_j = 0 \text{ and } j \in S,
\]
\[
\sum_j a_{ij}\xi_j \geq 0, \quad \text{if } u_i = 0 \text{ and } i \in T,
\]
\[
\sum_j a_{ij}\xi_j = 0, \quad \text{if } i \notin T,
\]
\[-\sum_j d_j\xi_j = 1, \hspace{1cm} (RD*3)
\]
minimize $\sum_j c_j\xi_j$. \hspace{1cm} (RD*4)

Proposition 2.1.

(x_j, μ) resp. (y_i) is the optimal solution of $\text{P}^*|\lambda$, resp. $\text{D}^*|\lambda$ if and only if (x_j) resp. (y_i, λ) is the optimal solution of $\text{D}^*|\mu$ resp. $\text{P}^*|\mu$.
resp. \((\gamma_1^*\) is the optimal solutions of \(P|\lambda^*\) resp. \(D|\lambda^*\). The number of steps required by the double parametrszation method, that is, the number of the values of \(\lambda_i(\lambda_0<\lambda_1<\lambda_n)\) for which the problem have to be solved, is the same to that of the method described in § 1.

§ 3. TRANSPORTATION NETWORK FLOW PROBLEM

Let \(N\) be a network with \(m\) branches having proper orientation and \(n+1\) nodes \(0, 1, 2, \cdots, n\). Let the source and the sink be denoted by 0 and \(n\) respectively. Further, let \(B\) be the set of all orientated branches of \(N\). Then the standard form of the transportation network flow problem which corresponds to \(D^*|\mu\) in § 2 is the following.

\[
\begin{align*}
\text{D}^*|\mu & \\
\sum_{(i, j) \in B} x_{ij} = \sum_{(j, k) \in B} x_{jk} & \quad \text{for every nodes } j(\neq 0, n) \quad (D^*1) \\
0 \leq x_{ij} & \leq \epsilon_{ij}, \quad (D^*2) \\
\sum_{(0, j) \in B} x_{0j} = \sum_{(i, n) \in B} x_{in} & = \mu, \quad (D^*3) \\
\text{minimize } & \sum_{(i, j) \in B} d_{ij}x_{ij} \quad (D^*4)
\end{align*}
\]

where, \(\epsilon_{ij} \geq 0, \ d_{ij} \geq 0\) for \((i, j) \in B\).

And its dual is

\[
\begin{align*}
\text{P}^*|\mu & \\
w_{ij'} = d_{ij} + u_j - u_i + w_{ij} & \geq 0, \quad \text{for } (i, j) \in B, \quad (P^*1) \\
w_{ij} & \geq 0, \quad \text{for } (i, j) \in B \quad (P^*2) \\
u_0 - u_n & = \lambda, \quad (P^*3) \\
\text{maximize } & \mu \lambda - \sum_{(ij) \in B} \epsilon_{ij}w_{ij} \quad (P^*4)
\end{align*}
\]

we define further

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Proof.

If \((x_i, \mu)\) resp. \((y_i)\) is a feasible solution of \(P|\lambda\) resp. \(D|\lambda\), then \((x_j)\) resp. \((y_i)\) is a feasible solution of \(D^*|\mu\) resp. \(P^*|\mu\). On account of the optimality of \((x_j, \mu)\) resp. \((y_i)\) for \(P|\lambda\) resp. \(D|\lambda\), we have

\[
\sum_j c_jx_j - \lambda \mu = \sum_i y_ib_i.
\]

Hence

\[
f^*(x) = \sum_j c_jx_j = \sum_i y_ib_i + \lambda \mu = g^*(y, \lambda),
\]

by the duality theorem, our proposition follows immediately. Now suppose that \((y_i)\) is the optimal solution of \(D|\lambda\), and that \((x_i, \mu)\) resp. \((\sigma_i)\) is an optimal solution of \(RPIA\) resp. \(RDIA\), and define \(\theta_0\) as in Proposition 1.3. By the method stated in § 1, \((x_i, \mu)\) resp. \((y_i') = (y_i+\sigma_i\theta_0)\) is an optimal solution of \(P|\lambda'\) resp. \(D|\lambda'\) where \(\lambda' = \lambda + \theta_0\). Optimal solution of \(RD|\lambda\) are not always unique, but we assume for a moment that \(\theta_0\) is uniquely determined by \(RD|\lambda\), independently of various optimal solutions through which it is constructed. Then the following proposition holds.

Proposition 2.2.

If \((y^*, \lambda^*)\) is the optimal solution of \(RP^*|\mu\) corresponding to op. solution \((x_i, \mu)\) of \(RPIA\), then \(\lambda^* = \lambda + \theta_0\).

Proof.

By the Proposition 1.6, the optimal solution \((x_i, \mu)\) of \(RPIA\) is a feasible solution of \(RP|\lambda + \theta_0\), so we can easily see that \((y_i', \lambda')\) is a feasible solution of \(RP^*|\mu\) and we have \(\lambda^* \geq \lambda + \theta_0\). On the other hand, \((y^*, \lambda^*)\), being an optimal solution of \(RP^*|\mu\), is an optimal solution of \(P^*|\mu\) by the Proposition 1.1. Therefore. \((x_i, \mu)\) resp. \((y_i^*)\) is the optimal solution of \(P|\lambda^*\) resp. \(D|\lambda^*\) by Proposition 2.1. If we put \(\lambda^* = \lambda + \theta\) and \(y_i^* + \theta \sigma_i, (\sigma_i)\) is an optimal solution of \(RD|\lambda\) by Proposition 1.2 and 1.4. Hence we have \(\theta \leq \theta_0\) by Proposition 1.3 and our assumption about \(\theta_0\). Consequently we have \(\lambda^* = \lambda + \theta_0\). By double parametrization method, we mean a procedure which, starting with the optimal solution of \((x_i, \mu)\) resp. \((y_i)\) of \(P|\lambda\) resp. \(D|\lambda\) for some \(\lambda\), solves \(RP|\lambda\) and \(RP^*|\mu\), alternatively. At some stage of this procedure, if \((y_i^*, \lambda^*)\) is an optimal solution of \(RP^*|\mu, (x_j, \mu)\)
minimize \(-\mu \lambda + \sum x_{ij}d_{ij}\). \hspace{1cm} (P4)

And the corresponding restricted problems are

\textbf{RP|} \lambda

\[
0 \leq x_{ij} \leq c_{ij},
\]

\(\sum_{(i, j) \in B} x_{ij} = \sum_{(j, k) \in B} x_{jk}, \quad \text{for each nodes } j(\neq 0, n)\) \hspace{1cm} (RP1)

\[
\sum_{(i, j) \in B} X_{ij} = \sum_{(i, n) \in B} x_{in} = \mu, \quad \text{and} \\
x_{ij} = 0, \quad \text{if } w_{ij} > 0, \\
x_{ij} = c_{ij}, \quad \text{if } w_{ij} < 0,
\]

\[
\text{maximize } \mu, \quad \text{for each nodes } j(\sim 0, n)
\] \hspace{1cm} (RP2)

\[
\sum_{(i, j) \in B} X_{ij} = \sum_{(i, n) \in B} x_{im} = \mu, \quad \text{and} \\
x_{ij} = 0, \quad \text{if } w_{ij} > 0, \\
x_{ij} = c_{ij}, \quad \text{if } w_{ij} < 0,
\]

\[
\text{maximize } \mu, \quad \text{for each nodes } j(\sim 0, n)
\] \hspace{1cm} (RP3)

\[
\sum_{(i, j) \in B} X_{ij} = \sum_{(i, n) \in B} x_{in} = \mu, \quad \text{and} \\
x_{ij} = 0, \quad \text{if } w_{ij} > 0, \\
x_{ij} = c_{ij}, \quad \text{if } w_{ij} < 0,
\]

\[
\text{maximize } \mu, \quad \text{for each nodes } j(\sim 0, n)
\] \hspace{1cm} (RP4)

\[
\sum_{(i, j) \in B} X_{ij} = \sum_{(i, n) \in B} x_{im} = \mu, \quad \text{and} \\
x_{ij} = 0, \quad \text{if } w_{ij} > 0, \\
x_{ij} = c_{ij}, \quad \text{if } w_{ij} < 0,
\]

\[
\text{maximize } \mu, \quad \text{for each nodes } j(\sim 0, n)
\] \hspace{1cm} (RP5)

\textbf{RD|} \lambda

\[
\sigma_i - \sigma_j - \rho_{ij} \leq 0, \quad \text{if } w_{ij} = 0, \\
\rho_{ij} \geq 0, \quad \text{if } w_{ij} = 0,
\]

\[
\sigma_0 - \sigma_n = 1, \hspace{1cm} (RD1)
\]

\[
\text{maximize } -\sum c_{ij} \rho_{ij}. \hspace{1cm} (RD2)
\]

we may assume that \(w_{ij}\) in \(P^*|\mu\), \(RP^*|\mu\) and \(D|\lambda\) satisfy the following conditions

if \(d_{ij} + u_j - u_i \geq 0\), then \(w_{ij} = 0\),

and if \(d_{ij} + u_j - u_i < 0\), then \(w_{ij} = u_i - u_j - d_{ij}\).

Therefore, we assume that \(w_{ij} \cdot w_{ij}' = 0\).

3.1. Ford and Fulkerson's method

Ford and Fulkerson's or Kelley's method for solving transportation network flow problem can be characterized as a method for solving \(P|\lambda\) and \(D|\lambda\) given in § 1. As an initial optimal solution of \(P|\lambda\) resp. \(D|\lambda\) for \(\lambda = 0\), we can take \(x_{ij} = 0\) and \(\mu = 0\), resp. \(w_{ij} = 0\) and \(w_{ij}' = d_{ij}\) for all \((i, j) \in B\)
Primal Dual Method of Parametric Programming

\[\text{RP}^*|_\mu \]

\[w_{ij}' = d_{ij} + u_j - u_i + w_{ij} \geq 0, \quad \text{for } (i, j) \in B, \quad (\text{RP}^*1) \]

\[w_{ij} \geq 0, \quad \text{for } (i, j) \in B, \quad (\text{RP}^*2) \]

\[u_0 - u_n = \lambda, \quad (\text{RP}^*3) \]

\[w_{ij}' = 0, \quad \text{if } x_{ij} > 0, \]

\[w_{ij} = 0, \quad \text{if } x_{ij} < c_{ij}, \]

\[\text{maximize } \lambda. \quad (\text{RP}^*5) \]

\[\text{RD}^*|_\mu \]

\[\xi_{ij} \geq 0, \quad \text{if } x_{ij} = 0 \]

\[\xi_{ij} \leq 0, \quad \text{if } x_{ij} = c_{ij}, \]

\[\sum_{(i, j) \in B} \xi_{ij} = \sum_{(i, j) \in B} \xi_{jk}, \quad \text{for each nodes } j(\neq 0, n) \quad (\text{RD}^*) \]

\[\sum_{(i, j) \in B} \xi_{ij} = \sum_{(i, j) \in B} \xi_{jn} = 1, \quad (\text{RD}^*3) \]

\[\text{minimize } \sum_{(i, j) \in B} \xi_{ij} d_{ij}. \quad (\text{RD}^*4) \]

Here, \(D|\lambda \) and \(P|\lambda \) described in § 1, § 2 are written as follows

\[D|\lambda \]

\[w_{ij}' = d_{ij} + u_j - u_i + w_{ij} \geq 0, \quad \text{for } (i, j) \in B, \quad (D1) \]

\[w_{ij} \geq 0, \quad \text{for } (i, j) \in B, \quad (D2) \]

\[u_0 - u_n = \lambda, \quad (D3) \]

\[\text{maximize } - \sum_{(i, j) \in B} c_{ij} u_{ij}. \quad (D4) \]

\[P|\lambda \]

\[0 \leq x_{ij} \leq c_{ij}, \quad \text{for } (i, j) \in B, \quad (P1) \]

\[\sum_{(i, j) \in B} x_{ij} = \sum_{(j, k) \in B} x_{jk}, \quad \text{for each nodes } j(\neq 0, n) \quad (P2) \]

\[\sum_{(0, j) \in B} x_{0j} = \sum_{(i, n) \in B} x_{in} = \mu, \quad (P3) \]
and \(u_i = 0 \) for all nodes \(i \). An essential point of this method lies in the so called labeling process in solving RP\(|\lambda \) and RD\(|\lambda \).

3.1.1. Labeling method for RP\(|\lambda \).

The labels of the form \((\pm i, h)\) are attached to nodes according to the following rules.

1. Label source 0 with the label \((* \infty)\).
2. Consider any labeled node \(i \) with the label \((\pm k, h)\) not yet scanned.
 a. For any unlabeled nodes \(j \) such that \((i, j) \in E\), if \(x_{ji} < c_{ij} \) and \(w'_{ji} = 0 \) we attach the label \((+i \min [h, c_{ij} - x_{ij}])\) to \(j \). Otherwise \(j \) is left unlabeled.
 b. For any unlabeled node \(j \) such that \((j, i) \in E\), if \(x_{ij} > 0 \) and \(w_{ji} = 0 \) we attach the label \((-i \min [h, x_{ij}])\) to \(j \). Otherwise \(j \) is left unlabeled.

When then the process 2 is over for all \(j \) such that \((i, j) \in E\) or \((j, i) \in E\), \(i \) is scanned.

3. When the sink \(n \) has been labeled with \((i, h)\), we have obtained the path \(0 = i_0, i_1, \ldots, i_t = n \) where \(i_k \) is labeled \((\pm i_{k-1}, h_k)\), then we change \(x_{ik}i_{k+1} \) to \(x_{ik}i_{k+1} + h \) if \((i_k, i_{k+1}) \in E\) and to \(x_{ik}i_{k+1} - h \) if \((i_{k+1}, i_k) \in E\). Thus we have increased the total flow by \(h \) and return to process 2.

4. When the labeling process has terminated, if the sink \(n \) is not labeled, the maximal flow, i.e. an optimal solution of RP\(|\lambda \), have been obtained. Next we will solve the restricted problem RD\(|\lambda \). First, let \(I \) be the the set of all labeled nodes and \(J \) the set of all unlabeled nodes. They will be utilized in the course of solution.

3.1.2. The optimal solution for RD\(|\lambda \).

\(\sigma_i \) and \(\rho_{ij} \) are defined as follows

\[
\sigma_i = \begin{cases}
1, & \text{if } i \in I, \\
0, & \text{if } i \in J,
\end{cases}
\]

(3.1.1)

\[
\rho_{ij} = \begin{cases}
1, & \text{if } (i, j) \in IJ \text{ and } w_{ij}' = 0, \\
-1, & \text{if } (i, j) \in JI \text{ and } w_{ij} > 0, \\
0, & \text{otherwise}
\end{cases}
\]

(3.1.2)
Proposition 3.1.

(σ_i, ρ_{ij}) defined by (3.1.1) and (3.1.2) is an optimal solution of RD$|\lambda$.

Proof.

The feasibility of (σ_i, ρ_{ij}) for RD$|\lambda$ is obvious. The optimality of (σ_i, ρ_{ij}) for RD$|\lambda$ is proved as follows.

When $(i, j) \in \bar{IJ}$, $w_{ij}'>0$ implies $x_{ij}=0$ and $w_{ij}'=0$ implies $x_{ij}=c_{ij}$, for otherwise j would be labeled from i. Altogether, we have $x_{ij}=c_{ij}\rho_{ij}$ for $(i, j) \in \bar{IJ}$.

When $(i, j) \in J \cdot I$, $w_{ij}>0$ implies $x_{ij}=c_{ij}$ and $w_{ij}=0$ implies $x_{ij}=0$, for otherwise i would be labeled from j. Therefore, we have $x_{ij}=-c_{ij}\rho_{ij}$ for $(i, j) \in J \cdot I$.

On the other hand we have

$$\sum_{(i, j) \in B} x_{ij} = \sum_{i} x_{ij} - \sum_{j} x_{ij}, \quad \text{and} \quad \sum_{(i, j) \in B} x_{ij} = \sum_{(i, j) \in \bar{IJ}} c_{ij}\rho_{ij}.$$

Hence by the duality theorem (x_{ij}) resp. (σ_i, ρ_{ij}) is an optimal solution of RP$|\lambda$ resp. RD$|\lambda$.

3.1.3. Determination of θ_0

θ_0 described in §1 is determined as follows.

$$\theta_1 = \begin{cases} \min_{\sigma_i - \sigma_j - \rho_{ij}} w_{ij}' & \text{where } \sigma_i - \sigma_j - \rho_{ij} > 0 \text{ if there is } (i, j) \in B, \\ \sigma_i - \sigma_j - \rho_{ij} > 0 & \text{such that } \sigma_i - \sigma_j - \rho_{ij} > 0, \\ \infty & \text{if there is no } (i, j) \in B \text{ such that } \sigma_i - \sigma_j - \rho_{ij} > 0. \end{cases}$$

That is,

$$\theta_1 = \begin{cases} \min w_{ij} & \text{where } (i, j) \in I \cdot J \text{ and } w_{ij}' > 0, \\ \infty & \text{if there is no } (i, j) \in I \cdot J \text{ such that } w_{ij}' > 0, \end{cases}$$

$$\theta_2 = \begin{cases} \min_{\rho_{ij}} w_{ij} = \min_{\rho_{ij}} w_{ij}, & (i, j) \in J \cdot I \text{ and } w_{ij} > 0, \\ \infty & \text{if there is no } (i, j) \in J \cdot I \text{ such that } w_{ij} > 0, \end{cases}$$

$$\theta_0 = \min (\theta_1, \theta_2).$$
3.1.4. In the course of the labeling process in 3.1.1, if it turns out that maximal flow become infinite, no optimal solution exists for P|λ', D|λ' with λ' larger than λ. If the maximal flow is finite, x_{ij} determined by labeling process, together with u_{ij}+σ_{ij}θ and w_{ij}+ρ_{ij}θ with θ ≤ θ₀ are optimal solutions of P|λ+θ and D|λ+θ.

3.2. Iri's theory on network flow problem

Iri's original theory for solving network-flow problem is nothing but the method of double parametrization. The "voltage increasing step" in his theory exactly corresponds to the problem RP*|μ and "the current increasing step" to RP|λ. In what follows we shall solve P*|μ resp. D*|μ by the method given in §1, where Iri's "θ-matrix method" will take an essential part in solving restricted problems. It is pointed out that it is utilized for the solution of RD*|μ as well as RP*|μ.

3.2.1. θ-matrix method for solving RP*|μ.

For any pair of two nodes (i, j) we define a matrix (θ_{ij}^k), which will be called θ-matrix,

\[θ_{ij}^k = \begin{cases}
0, & \text{if } i=j, \\
-d_{ij}, & \text{if } (i, j) \in B \text{ and } x_{ij}>0, \\
d_{ji}, & \text{if } (j, i) \in B \text{ and } x_{ji}<c_{ji}, \\
\infty, & \text{otherwise.}
\end{cases} \]

v_i is defined for any nodes i recursively as follows.

\[v_i = \begin{cases}
\infty, & \text{if } i \neq n, \\
0, & \text{if } i = n,
\end{cases} \]

\[v_i^{k+1} = \min_j (θ_{ij}^k + v_j). \]

Proposition 3.2 (Iri's theorem c.f. [5])

(a) v_i (k=1, 2, ...) rapidly converges, i.e. we have for some N(n-1)

\[v_0 > v_1 > ... > v_i = v_i = ... = v_i \]

for any nodes i.
we put here \(u_i = v_i \) (notice that \(u_n = 0 \)).

(b) \(u_i \) and \(w_{ij} = \max (u_i - u_j - d_{ij}, 0) \) is a feasible solution of \(\text{RP}^*|\mu \).

(c) For any feasible solution \((u'_i)\) of \(\text{RP}^*|\mu \) satisfying \(u'_n = 0 \), \(u'_j \geq u'_j \) holds for any nodes \(i \), and \(u_i w_{ij} \delta (= u_0) \) obtained by the above \(\Theta \)-matrix method is the optimal solution of \(\text{RP}^*|\mu \).

3.2.2. The optimal solution of \(\text{RD}^*|\mu \) is obtained as soon as the solution of \(\text{RP}^*|\mu \) has been found by \(\Theta \)-matrix method. By the definition of \(u_i = v_i \), \(u_0 = \lambda \) can be written in the following form, provided that \(u_0 > \infty \)

\[
\begin{align*}
 u_0 &= \theta^0_0 + \theta^1_{i_1} + \cdots + \theta^k_{i_{k-1}} + \cdots + \theta^m_{i_{m-2}} + \theta^n_{i_{m-1}}.
\end{align*}
\]

where

\[
\begin{align*}
 \theta^k_{i_{k-1}} &= \begin{cases}
 -d_{ik_{k-1}} & \text{if } (i_k, i_{k-1}) \in B, \\
 d_{k-1} & \text{if } (i_{k-1}, i_k) \in B,
 \end{cases}
\end{align*}
\]

Now, we define \(\xi_{ij} \), for \((i, j) \in B\), by

\[
\xi_{ij} = \begin{cases}
 -1, & \text{if } (i, j) = (i_k, i_{k-1}) \text{ and } (i_k, i_{k-1}) \in B
 \text{ in the above expression of } u_0, \\
 1, & \text{if } (i, j) = (i_k, i) \text{ and } (i_k, i) \in B
 \text{ in the above expression of } u_0,
 \\
 0, & \text{otherwise},
\end{cases}
\]

the following proposition is straightforward from the definition of \(v_j \) and from the fact that \(\lambda = u_0 = \sum_{(i, j) \in B} d_{ij} \xi_{ij} \).

Proposition 3.3.
\(\xi_{ij} \) defined above is the optimal solution of \(\text{RD}^*|\mu \).

3.2.3. \(\theta_0 \) is defined as follows

\[
\begin{align*}
 \theta_1 &= \begin{cases}
 \min (c_{ij} - x_{ij}) & \text{where } \xi_{ij} = 1, \\
 \infty & \text{if there is no } (i, j) \in B \text{ such that } \xi_{ij} = 1,
 \end{cases}
\end{align*}
\]

\[
\begin{align*}
 \theta_2 &= \begin{cases}
 \min x_{ij} & \text{if there is } (i, j) \in B \text{ such that } \xi_{ij} = -1, \\
 \infty & \text{otherwise},
 \end{cases}
\end{align*}
\]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Primal Dual Method of Parametric Programming

\[\theta_0 = \min (\theta_1, \theta_2), \]

if \(u_0 = \infty \) in the \(\Theta \)-matrix method, then there is no optimal solution of \(\mathbf{P}^*|\mu', \mathbf{D}^*|\mu' \) for \(\mu' > \mu \), if \(u_0 < \infty \) then \((u_i, \mathbf{w}_{ij})\), \(x_{ij} + \theta \xi_{ij} \) is a optimal solution of \(\mathbf{P}^*|\mu + \theta, \mathbf{D}^*|\mu + \theta \) where \(0 < \theta \leq \theta_0 \).

§ 4. CPM

CPM (the critical path method) is the method for solving the following parametric linear programming

\[
D|\lambda
\]

\[
y_{ij} + t_i - t_j \leq 0 \quad \text{for } (i, j) \in B, \tag{D1}
\]

\[
d_{ij} \leq y_{ij} \leq D_{ij}, \tag{D2}
\]

\[
t_n - t_0 = \lambda, \tag{D3}
\]

maximize \(U(\lambda) = \sum_{(i, j) \in B} c_{ij} y_{ij} \). \tag{D4}

Again \(B \) is the set of all branches of given network with \(n+1 \) nodes and \(m \) branches. Here branches are called activities or jobs, \(t_i \) are node-times, i.e. starting times of jobs \((i, j)\) for \((i, j) \in B\), and \(y_{ij} \) are durations for jobs \((i, j)\). \(D_{ij} \) resp. \(d_{ij} \) can be interpreted as normal resp. crash duration for job \((i, j)\), \(\lambda \) means the total duration of this scheduling. \(U(\lambda) = \sum_{(i, j) \in B} c_{ij} y_{ij} \) where \(c_{ij} \geq 0 \) is called project utility function. The dual problem of \(D|\lambda \), considered as the primal has the following form

\[
P|\lambda
\]

\[
\sum_{(i, j) \in B} f_{ij} \geq 0 \quad \text{for } (i, j) \in B, \tag{P1}
\]

\[
\sum_{(i, j) \in B} f_{ij} = \sum_{(j, k) \in B} f_{ik} \quad \text{for every nodes } j (\neq 0, n), \tag{P2}
\]

\[
\sum_{(0, j) \in B} f_{0j} = \sum_{(i, n) \in B} f_{in} = \mu, \tag{P3}
\]

\[
f_{ij} + g_{ij} - h_{ij} = c_{ij}, \tag{P4}
\]

minimize \(\lambda \mu + \sum_{(i, j) \in B} D_{ij} g_{ij} - \sum_{(i, j) \in B} d_{ij} h_{ij} \). \tag{P5}

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
4.1. Kelley and Fulkerson's method.

4.1.1. To find an optimal solution of $D|\lambda$, for a sufficiently large λ. We put $y_{ij} = D_{ij}$, $t_0 = 0$, $t_j = \max (y_{ij} + t_i)$ for $j \neq 0$, and $M = \max (D_{in} + t_i)$. Then y_{ij}, t_i and $t_n = \lambda$ give an optimal solution of $D|\lambda$ for $\lambda \geq M$.

4.1.2. Solution of $RP|\lambda$

$\text{RP}^{(1)}|\lambda$

$$f_{ij}, \ g_{ij}, \ h_{ij} \geq 0$$ (RP$^{(1)}1$)

$$\sum_{(i, j) \in B} f_{ij} = \sum_{(j, k) \in B} f_{jk} \quad \text{for} \quad j \neq 0, \ n,$$ (RP$^{(1)}2$)

$$f_{ij} + g_{ij} - h_{ij} = \epsilon_{ij},$$ (RP$^{(1)}3$)

$$f_{ij} = 0, \quad \text{if} \quad y_{ij} + t_i - t_j < 0,$$
$$g_{ij} = 0, \quad \text{if} \quad y_{ij} < D_{ij},$$
$$h_{ij} = 0, \quad \text{if} \quad y_{ij} > d_{ij},$$ (RP$^{(1)}4$)

maximize $\sum_{(i, j) \in B} f_{in} = \sum_{(0, j) \in B} f_{0j}$. (RP$^{(1)}5$)

$\text{RD}|\lambda$

$$\sigma_{ij} + \delta_i - \delta_j \geq 0, \quad \text{if} \quad y_{ij} + t_i - t_j = 0,$$ (RD1)

$$\sigma_{ij} \leq 0, \quad \text{if} \quad y_{ij} = D_{ij},$$ (RD2)

$$\sigma_{ij} \geq 0, \quad \text{if} \quad y_{ij} = d_{ij},$$ (RD3)

$$-\delta_0 + \delta_n = 1,$$ (RD4)

minimize $\sum_{(i, j) \in B} c_{ij} \sigma_{ij}$. (RD5)

$\text{RP}^{(1)}|\lambda$ has various equivalent forms, that is

$\text{RP}^{(2)}|\lambda$

$$f_{ij} \geq 0$$ (RP$^{(2)}1$)

$$\sum_{(i, j) \in B} f_{ij} = \sum_{(j, k) \in B} f_{jk} \quad \text{for} \quad j \neq 0, \ n,$$ (RP$^{(2)}2$)
Primal Dual Method of Parametric Programming

\[f_{ij} = \begin{cases} 0, & \text{if } D_{ij} + t_i - t_j < 0, \\ \geq c_{ij}, & \text{if } D_{ij} + t_i - t_j > 0, \\ \leq c_{ij}, & \text{if } d_{ij} + t_i - t_j < 0. \end{cases} \]

\[\sum_{(i, n) \in B} f_{in} = \sum_{(0, j) \in B} f_{0j}, \]

\[\max \sum_{(i, n) \in B} f_{in} = \sum_{(0, j) \in B} f_{0j}. \]

\[f_{ij} \geq 0, \]

\[\sum_{(ij) \in B} f_{ij} = \sum_{(ik) \in B} f_{ij} \quad \text{for } j(\neq 0, n), \]

\[f_{ij} \leq c_{ij}, \quad \text{if } (i, j) \in Q_1 \cap Q_2, \]

\[f_{ij} = c_{ij}, \quad \text{if } (i, j) \in Q_1 - (Q_2 \cup Q_3 \cup Q_4), \]

\[f_{ij} \geq c_{ij}, \quad \text{if } (i, j) \in Q_1 \cap Q_4, \]

\[f_{ij} = 0, \quad \text{if } (i, j) \in B - Q_1, \]

\[\max \sum_{(i, n) \in B} f_{in} = \sum_{(0, j) \in B} f_{0j}. \]

here,

\[Q_1 = \{(i, j) \mid y_{ij} + t_i - t_j = 0\}, \]

\[Q_2 = \{(i, j) \mid y_{ij} = D_{ij} > d_{ij}\}, \]

\[Q_3 = \{(i, j) \mid d_{ij} = y_{ij} = D_{ij}\}, \]

\[Q_4 = \{(i, j) \mid y_{ij} < D_{ij}\}. \]

\[f(i, j, k) \geq 0 \quad \text{for } (i, j) \in B, \quad k = 1, 2, \]

\[\sum_{(i, j) \in B} (f(i, j, 1) + f(i, j, 2)) = \sum_{(j, k) \in B} (f(j, k, 1) + f(j, k, 2)) \]

\[\text{for } j(\neq 0, n), \]

\[f(i, j, k) \leq c(i, j, k), \quad k = 1, 2, \]

\[f(i, j, k) = c(i, j, k), \quad \text{if } a(i, j, k) + t_i - t_j > 0, \quad k = 1, 2, \]

\[f(i, j, k) = 0, \quad \text{if } a(i, j, k) + t_i - t_j < 0, \quad k = 1, 2, \]
maximize $\sum_{(i,n) \in B} f(i, n, 1) + f(i, n, 2)$, \hspace{1cm} (RP(4)5)

here,

\begin{align*}
 c(i, j, 1) &= c_{ij}, \quad a(i, j, 1) = D_{ij}, \\
 c(i, j, 2) &= \infty, \quad a(i, j, 2) = d_{ij}.
\end{align*}

Proposition 4.1.

$RP(1)|\lambda, \ RP(2)|\lambda, \ RP(3)|\lambda, \ RP(4)|\lambda$

are mutually equivalent problems.

Lemma.

In $D|\lambda$, we assume without any loss of generality, that $t_0 = 0, t_n = \lambda$ and $y_{ij} = \min \{D_{ij}, t_j - t_i\}$.

Using the lemma and putting

\begin{align*}
 f_{ij} + g_{ij} - h_{ij} &= c_{ij}, \\
 a_{ij} &= \max (0, c_{ij} - f_{ij}), \\
 h_{ij} &= \max (0, f_{ij} - c_{ij}), \quad f_{ij} = f(i, j, 1) + f(i, j, 2)
\end{align*}

and

\begin{align*}
 f(i, j, 1) &= \min (c_{ij}, f_{ij}), \quad f(i, j, 2) = \max (0, f_{ij} - c_{ij}).
\end{align*}

It is easily seen that we can transform any one of four equivalents of $RP|\lambda$ into another. By the first relation of $(RP(4)|\lambda)$, $a(i, j, 2) + t_i - t_j > 0$ implies $f(i, j, 2) = \infty$. Actually, since $a(i, j, 2) + t_i - t_j = d_{ij} + t_i - t_j \leq 0$, the statement, with an always false premise, trivially holds. Kelley took up the form of $RP(3)|\lambda$, and Fulkerson studied the form of $RP(4)|\lambda$. It is to be noted that $RP(4)|\lambda$ has the same form of maximum flow problem of $RP|\lambda$ in 3.1. Therefore, we max solve any one of the four equivalents by the labeling method in 3.1.

4.1.3. An optimal solution $(\sigma_{ij}, \delta_{ij})$ is constructed by the labeling method in $RP|\lambda$ analogously to the way given in 3.1.2.

Put

$$\rho_{ij} = \sigma_{ij} + \delta_i - \delta_j$$

and
Primal Dual Method of Parametric Programming

\[\theta_1 = \min_{\sigma_{ij} < 0} \left(\frac{y_{ij} + t_i - t_j}{\rho_{ij}} \right) \]
\[\theta_2 = \min_{\sigma_{ij} > 0} \left(\frac{y_{ij} - d_{ij}}{\sigma_{ij}} \right) \]
\[\theta_3 = \min_{\sigma_{ij} < 0} \left(\frac{y_{ij} - D_{ij}}{\sigma_{ij}} \right) \]
\[\theta_0 = \min (\theta_1, \theta_2, \theta_3). \]

*1.4. The optimal solution \((f_i, g_{ij}, h_{ij})\) of \(R\exp P|\lambda\) resp. \((y_{ij} - \theta_0\sigma_{ij}, t_i - \delta_i\theta_0)\) is an optimal solution of \(P|\lambda - \theta_0\) resp. \(D|\lambda - \theta_0\).

4.2. Iri's method and CPM

The problems \(D*|\mu\) or \(P*|\mu\) in CPM can be defined by

\(D*|\mu\)

\[f_{ij}, g_{ij}, h_{ij} \geq 0, \quad (D*1) \]
\[f_{ij} + g_{ij} - h_{ij} = c_{ij}, \quad (D*2) \]
\[\sum_{(i, j) \in B} f_{ij} = \sum_{(j, k) \in B} f_{jk} \quad \text{for} \quad j (\neq 0, n), \quad (D*3) \]
\[\sum_{(k, j) \in B} f_{kj} = \sum_{(i, k) \in B} f_{ik} = t^*, \quad (D*4) \]
\[\text{minimize} \sum_{(i, j) \in B} (D_{ij}g_{ij} - D_{ij}h_{ij}). \quad (D*5) \]

By putting
\[f_{ij} = f(i, j, 1) + f(i, j, 2), \]
\[f(i, j, 1) = \min (c_{ij}, f_{ij}) \]
and
\[f(i, j, 2) = \max (0, f_{ij} - c_{ij}) \]
according to Fulkerson we have the following problem which is equivalent to \(D*|\mu\).

\(D*'|\mu\)

\[0 \leq f(i, j, 1) \leq c_{ij}, \]
\[0 \leq f(i, j, 2), \quad (D*1) \]
\[\sum_{(i, j) \in B} (f(i, j, 1) + f(i, j, 2)) \]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Reijiro Kurata

\[
= \sum_{(j, k) \in B} (f(j, k, 1) + f(j, k, 2)) \quad \text{for } j \neq 0, n, \quad (D^*2)
\]

\[
= \sum_{(0, j) \in B} (f(0, j, 1) + f(0, j, 2))
\]

\[
= \sum_{(i, n) \in B} (f(i, n, 1) + f(i, n, 2)) = \mu, \quad (D^*3)
\]

\[
\text{minimize } \sum_{(i, j) \in B} (-D_{ij} f(i, j, 1) - d_{ij} f(i, j, 2)) \quad (D^*4)
\]

This problem has the same form to D*|μ in § 3 except that there exist two branches from i to j and \(d_{ij}\) of (D*4) in § 3 are non-positive in this case. But the entire theory of Iri can be applied to this case.

4.2. 1. \(\theta\)-matrix method for solving RP*|μ

\[
\text{RP*|μ}
\]

\[
y_{ij} + t_i - t_j \leq 0, \quad (RP^*1)
\]

\[
d_{ij} \leq y_{ij} \leq D_{ij}, \quad (RP^*2)
\]

\[
y_{ij} + t_i - t_j = 0, \quad \text{if } f_{ij} > 0,
\]

\[
y_{ij} = D_{ij}, \quad \text{if } g_{ij} > 0, \quad (RP^*3)
\]

\[
y_{ij} = d_{ij}, \quad \text{if } h_{ij} > 0,
\]

\[
\text{minimize } \lambda = t_n - t_0. \quad (RP^*4)
\]

\[
\text{RD*|μ}
\]

\[
\xi_{ij} \geq 0, \quad \text{if } f_{ij} = 0
\]

\[
\eta_{ij} \geq 0, \quad \text{if } g_{ij} = 0, \quad (RD^*1)
\]

\[
\varepsilon_{ij} \geq 0, \quad \text{if } h_{ij} = 0,
\]

\[
\xi_{ij} + \eta_{ij} - \varepsilon_{ij} = 0, \quad (RD^*2)
\]

\[
\sum_{(i, j) \in B} \xi_{ij} = \sum_{(j, k) \in B} \xi_{jk}, \quad \text{for } j \neq 0, n, \quad (RD^*3)
\]

\[
\sum_{(0, j) \in B} \xi_{0j} = \sum_{(i, n) \in B} \xi_{in} = 1,
\]

\[
\text{minimize } \sum_{(i, j) \in B} D_{ij} \eta_{ij} - \sum_{(i, j) \in B} d_{ij} \xi_{ij} \quad (RD^*4)
\]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Primal Dual Method of Parametric Programming

\[
\theta_j^k = \begin{cases}
0 & \text{if } i = j \\
-D_{ji} & \text{if } (j, i) \in B \text{ and } f(j, i, 1) < c_{ji} \text{ (i.e. } f_{ji} < c_{ji}) \\
-d_{ji} & \text{if } (j, i) \in B \text{ and } f(j, i, 1) = c_{ji} \text{ (i.e. } f_{ji} \geq c_{ji}) \\
D_{ij} & \text{if } (i, j) \in B \text{ and } f(i, j, 1) > 0, \quad f(i, j, 2) = 0 \text{ (i.e. } 0 < f_{ij} \leq c_{ij}) \\
d_{ij} & \text{if } (i, j) \in B \text{ and } f(i, j, 2) > 0 \text{ (i.e. } f_{ij} > c_{ij}) \\
\infty & \text{otherwise.}
\end{cases}
\]

\(\tau_i\) is defined recursively for any nodes \(i\), as follows.

\[
\tau_i = \begin{cases}
0 & \text{if } i \neq n, \\
\infty & \text{if } i = n,
\end{cases}
\]

\[
k+1 \quad \tau_i = \min_{j} (\theta_j^k + \tau_j).
\]

Since \(\tau_i\) converges to \(\tau_i\), we put \(t_i = \tau_i\) for every nodes \(i\), and put \(t_0 = t_0' = t_0\) and \(y_{ij} = \min(D_{ij}, t_i - t_i)\). Then \((t_i, y_{ij})\) is an optimal solution of \(\text{RP}^*|\mu\), (i.e. minimizing \(z = t_0\)) satisfying \(t_0 = 0\).

4.2.1. \(t_0 = t_0'\) can be represented in the form \(\sum_{i,j} \pm D_{ij} \pm d_{ij}\) provided that \(t_0' = \infty\). If \(+D_{ij}\) resp. \(-D_{ij}\) appears under the summation we put \(\eta_{ij} = 1\) resp. \(\eta_{ij} = -1\). On the other hand, if \(+d_{ij}\) resp. \(-d_{ij}\) appears, we put \(\xi_{ij} = 1\) resp. \(\xi_{ij} = -1\) and \(\zeta_{ij} = \xi_{ij} - \eta_{ij}\). Otherwise \(\eta_{ij} = \xi_{ij} = 0\). Thus \((\xi_{ij}, \eta_{ij}, \zeta_{ij})\) is an optimal solution of \(\text{RD}^*|\mu\) and if we put

\[
\theta_1 = \min_{\xi_{ij} < 0} (-f_{ij} / \xi_{ij}), \quad \theta_2 = \min_{\eta_{ij} = -1} g_{ij}, \quad \theta_3 = \min_{\xi_{ij} = -1} h_{ij}, \quad \theta_0 = \min (\theta_1, \theta_2, \theta_3), \quad (f_{ij} + \theta_1, h_{ij} + \theta_1, h_{ij} + \theta_2, h_{ij} + \theta_3)
\]

is an optimal solution of \(\text{D}^*|\mu + \theta\), where \(0 < \theta \leq \theta_0\). Further, if \(t_0'\) obtained obtained by \(\Theta\)-matrix method is infinite, then there is no optimal solution of \(\text{D}^*|\mu'\) for \(\mu' > \mu\).
§ 5. MULTI-PARAMETRIC PROGRAMMING

Now, we consider the following problem with P parameters.

P|λ₁, ⋯, λₚ

\[
x_j \geq 0, \quad \text{if } j \in \mathcal{S}, \quad \text{(P1)}
\]

\[
\sum_j a_{ij}x_j \geq b_i, \quad \text{if } i \in \mathcal{T},
\]

(or)

\[
\sum_j a_{ij}x_j - u_i = b_i, \quad u_i \geq 0, \quad \text{if } i \in \mathcal{T}, \quad \text{(P2)}
\]

\[
\sum_j a_{ij}x_j = b_i, \quad \text{if } i \in \mathcal{T},
\]

minimize \[
\sum_j (c_j + \lambda_i d_j^1 + \cdots + \lambda_p d_j^p) x_j. \quad \text{(P3)}
\]

D|λ₁, ⋯, λₚ

\[
\sum_i a_{ij}x_i + w_j = c_j + \sum_i \lambda_i d_i^j, \quad w_j \geq 0, \quad \text{if } j \in \mathcal{S}. \quad \text{(D1)}
\]

\[
\sum_i a_{ij}x_i = c_j + \sum_i \lambda_i d_i^j, \quad \text{if } j \notin \mathcal{S},
\]

\[
y_i \geq 0, \quad \text{if } i \in \mathcal{T}, \quad \text{(D2)}
\]

maximize \[
\sum_i y_i b_i. \quad \text{(D3)}
\]

Given one optimal solution of \((y_i, w_j)\) of \(D|λ₁, ⋯, λₚ\) we shall give a sufficient condition which ensures a procedure to solve \(D|λ₁ + \theta₁, ⋯, λₚ + \theta_p\).

For this purpose we introduce variables \((\sigma_i^1, ⋯, \sigma_i^p)\) and a p restricted dual problem as follows,

RD′(l=1, 2, ⋯, p)

\[
\sum_i a_{ij} \sigma_i^l \leq d_i^j, \quad \text{if } w_j = 0, \quad j \in \mathcal{S}, \quad \text{(RD′1)}
\]

\[
\sum_i a_{ij} \sigma_i^l = d_i^j, \quad \text{if } j \notin \mathcal{S},
\]

\[
\sigma_i^l \geq 0, \quad \text{if } y_i = 0, \quad i \in \mathcal{T}, \quad \text{(RD′2)}
\]

maximize \[
\sum_i \sigma_i^l b_i.
\]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
The dual problem of RD$_l$ far each $l=1,\cdots,p$ is given by

$$\text{RP}_l$$

$$x_j \geq 0 \quad j \in S,$$ \hspace{1cm} (RP1)

$$\sum_j a_{ij}x_j - u_i = b_i, \quad u_i \geq 0, \quad \text{if } i \in T,$$

$$\sum_j a_{ij}x_j = b_i, \quad \text{if } i \in T,$$ \hspace{1cm} (RP2)

$$\sum_{j \in S} x_jw_j = 0,$$

$$\sum_{i \in T} u_iy_i = 0,$$ \hspace{1cm} (RP3)

$$\text{minimize } \sum_j d'_jx_j.$$ \hspace{1cm} (RP4)

Generally speaking, the optimal solutions of RP$_l$ depend on l, but in some particular cases, single solution (x_j) happens to be the optimal for RP$_l$ $l=1,2,\cdots,p$ simultaneously. As a condition which plays an essential role here, and is somewhat stronger than the assumption made throughout this paper, we assume the following condition C.

[Condition C]; There exists a simultaneous optimal solution (x_j) of RP$_l$, $l=1,3,\cdots,p$. The following proposition clearly hold.

Proposition 5.1.

Suppose that (y_i) is an optimal solution of D$|\lambda_1,\ldots,\lambda_p$, and σ_i are optimal solution of RD$_l$'s. If the condition C holds for RP$_l$ and if (x_j) is the simultaneous optimal solution of all RP$_l$, then (x_j) resp. $(y_i+\sum_{l=1}^p \sigma_i\theta_l)$ is the optimal solution of P$|\lambda_1+\theta_1,\ldots,\lambda_p+\theta_p$ resp. D$|\lambda_1+\theta_1,\ldots,\lambda_p+\theta_p$. Where θ_1,\cdots,θ_p satisfy the following inequalities

$$\sum_{l=1}^p \theta_l \beta'_j \geq -w_j, \quad \text{if } w_j > 0 \text{ and } j \in S,$$ \hspace{1cm} (5.1)

$$\sum_{l=1}^p \theta_l \sigma'_i \geq -y_i, \quad \text{if } y_i > 0 \text{ and } i \in T,$$ \hspace{1cm} (5.2)

where

$$\beta'_j = d'_j - \sum a_{ij} \sigma'_i.$$
§ 6. TRANSPORTATION NETWORK FLOW PROBLEM WITH MANY SOURCES

Let N be a network with m branches and $n+p$ nodes which contains p sources $0_1, \ldots, 0_p$, and one sink n. Let B be the set of all branches of N. We consider the following transportation network flow problem with p sources as a multi-parametric problem. As previously, we also formulate the other problems related to it.

\[\text{D*}|\mu_1, \ldots, \mu_p \]

\[\sum_{(i, j) \in B} x_{ij} = \sum_{(j, k) \in B} x_{jk} \quad \text{for every nodes } j(\neq 0_i, n), \quad (\text{D*1}) \]

\[\sum_{(i, j) \in B} x_{0lj} = \mu_l, \quad (l = 1, 2, \ldots, p) \]

\[\sum_{(i, n) \in B} x_{in} = \mu_1 + \ldots + \mu_p, \quad (\text{D*2}) \]

\[\text{minimize } \sum_{(i, j) \in B} d_{ij} x_{ij}. \quad (\text{D*3}) \]

\[\text{P*}|\mu_1, \ldots, \mu_p \]

\[w'_{ij} = d_{ij} + u_j - u_i + w_{ij} \geq 0 \quad \text{for } (i, j) \in B, \quad (\text{P*1}) \]

\[w_{ij} \geq 0 \quad \text{for } (i, j) \in B, \quad (\text{P*2}) \]

\[\text{maximize } \sum_{l=1}^{p} \mu_l (u_{0l} - u_n) - \sum_{(i, j) \in B} c_{ij} w_{ij}. \quad (\text{P*3}) \]

\[\text{RP*}| \]

\[w'_{ij} = d_{ij} + u_j - u_i + w_{ij} \geq 0 \quad \text{for } (i, j) \in B, \quad (\text{RP*1}) \]

\[w_{ij} \geq 0 \quad \text{for } (i, j) \in B, \quad (\text{RP*2}) \]

\[w'_{ij} = 0, \quad \text{if } x_{ij} > 0, \quad (\text{RP*3}) \]

\[w_{ij} = 0, \quad \text{if } x_{ij} < c_{ij}, \quad (\text{RP*4}) \]

\[\text{maximize } u_{0l} - u_n. \]
Primal Dual Method of Parametric Programming

\[\text{minimize} \sum_{(i, j) \in B} \xi_{ij} \]

subject to

\[\xi_{ij} \geq 0 \quad \text{if} \quad x_{ij} = 0, \quad (i, j) \in B, \]
\[\xi_{ij} \leq 0 \quad \text{if} \quad x_{ij} = c_{ij}, \quad (i, j) \in B, \]

\[\sum_{(i, j) \in B} \xi_{ij} = \sum_{(j, k) \in B} \xi_{jk} \quad \text{for each nodes} \quad j (\neq 0, n), \]

\[\sum_{(h, j) \in B} \xi_{0j} = 1, \]
\[\sum_{(i, n) \in B} \xi_{in} = 1, \]

\[\text{minimize} \sum_{(i, j) \in B} \xi_{ij} d_{ij}. \]

Fortunately, the condition C is satisfied by RP*\^i. Because, particular feasible solutions \(u_i \) obtained by Iri's \(\Theta \)-matrix method happen to be the maximal one among all feasible solution of RP*\^i for all \(l \) (cf. Proposition 3.2). Therefore, the optimal solution of RD*\^i can be constructed similarly as in 3.2.2. We express \(u_0 \) as \(u_0 = \sum \pm d_{ij} \), where \((i, j) \) ranges over some subset of \(B \). For the \((i, j) \in B \) for which \(+d_{ij} \) appears under the summation we put \(\xi_{ij} = 1 \). For those for which \(-d_{ij} \) appears, we put \(\xi_{ij} = -1 \). Otherwise we put \(\xi_{ij} = 0 \). Then, it is easy to see that \((\xi_{ij}^l) \) is an optimal feasible solution of RD*\^i. \(\theta_1, \ldots, \theta_p \) are determined by

\[\sum_{i=1}^p \xi_{ij}^l \theta_i \geq -x_{ij} \quad \text{for} \quad x_{ij} > 0, \]
\[\sum_{i=1}^p \xi_{ij}^l \theta_i \leq c_{ij} - x_{ij} \quad \text{for} \quad c_{ij} - x_{ij} > 0. \]

It seems to be natural to impose the following conditions on \(\theta_i \)'s adding to (6.1) and (6.2)

\[\theta_1 \geq 0, \ldots, \theta_p \geq 0 \]

and

\[\text{maximize} \quad \theta_1 + \theta_2 + \cdots + \theta_p. \]
Having got an optimal solution \((x_j + \sum_{i=1}^{p} \xi_{ij}^k \theta_i) \) of \(D^*|\mu_1 + \theta_1, \ldots, \mu_p + \theta_p \), we now take it as a starting point from which we carry on the procedure of solving \(RP^* \) by the \(\Theta \)-matrix method.

Remark 1. We may consider another multi-parametric problem \(D|\lambda_1, \ldots, \lambda_p \) with \((\lambda_1, \ldots, \lambda_p) = (u_0 - u_n, \ldots, u_{p-1} - u_n) \) as parameters. In this case \(RP^* \) may be interpreted as that the maxima of all input flows \((\mu_1, \ldots, \mu_p) = (\sum_{(o_1, j) \in B} x_{o_1, j}, \ldots, \sum_{(p, j) \in B} x_{p, j}) \) are looked for. But here \(C \) is not satisfied by \(RP^* \), that is, in general there doesn't exist the simultaneous maximal flows.

Remark 2. CPM problems with many starting nodes can also be solved by this method.

§ 7. A NUMERICAL EXAMPLE OF CAPACITATED HITCHCOCK PROBLEM TREATED AS A MULTI-PARAMETRIC PROGRAMMING

Hitchcock problem is

\[
\begin{align*}
\sum_{i=1}^{n} x_{ij} &= a_i, & i &= 1, 2, \ldots, m, \\
\sum_{i=1}^{m} x_{ij} &= b_j, & j &= 1, 2, \ldots, n,
\end{align*}
\]

where

\[
\sum_i a_i = \sum_j b_j,
\]

\[
0 \leq x_{ij} \leq c_{ij},
\]

minimize \(\sum d_{ij} x_{ij} \).

We regard above capacitated Hitchcock problem as the following multi-parametric programming with parameters \(\mu_1, \mu_2, \ldots, \mu_m \)

\[
D^*|\mu_1, \ldots, \mu_m
\]

\[
\sum_j x_{ij} = \mu_i,
\]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Primal Dual Method of Parametric Programming

\[\sum_i x_{ij} \leq b_j, \]
\[0 \leq x_{ij} \leq c_{ij}, \]

minimize \(\sum d_{ij} x_{ij} \).

\(P^*|\mu_1, \cdots, \mu_m \)

\[v_j \geq 0, \]
\[w_{ij} \geq 0, \]
\[d_{ij} + v_j - u_i + w_{ij} \geq 0, \]

maximize \(\sum \mu_i u_i - \sum_j b_j v_j - \sum c_{ij} w_{ij} \),

if we add \(\mu = \mu_1 + \cdots + \mu_m \), then we have one-parameter programming \(D^*|\mu \).

7.1. A procedure for solving of \(P^*|\mu_1, \cdots, \mu_m \) or \(D^*|\mu_1, \cdots, \mu_m \) is as follows.

a. First of all we put \(x_{ij} = 0 \) for all \(i, j \), \(u_i = v_j = 0 \) and \(w_{ij} = 0 \), so we have the optimal solution of \(D^*|\mu, \cdots, \mu \), \(P^*|\mu, \cdots, \mu \).

b. To solve \(R P^*|\mu_1, \cdots, \mu_m \) and \(R D^* \)

\(R P^* \)

\[v_j \geq 0, \]
\[w_{ij} \geq 0, \]
\[d_{ij} + v_j - u_i + w_{ij} \geq 0, \]
\[d_{ij} + v_j - u_i + w_{ij} = 0, \text{ if } x_{ij} > 0, \]
\[w_{ij} = 0, \text{ if } x_{ij} = c_{ij}, \]

maximize \(u_l \), \(l = 1, 2, \cdots, m \).

\(R D^* \)

\[\sum_j \xi_{ij}^l = \begin{cases} 0 & \text{if } i \neq l, \\ 1 & \text{if } i = l, \end{cases} \]
\[\xi_{ij}^l \geq 0, \text{ if } x_{ij} = 0, \]
\[\xi_{ij}^l \leq 0, \text{ if } x_{ij} = c_{ij}, \]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Reijiro Kurata

\[
\sum_{i} \xi_{ij}^l \leq 0, \quad \text{if } \sum_{i} x_{ij} = b_j,
\]

minimize \(\sum_{i,j} \xi_{ij}^l d_{ij} \).

c. Simultaneous optimal solutions of \(\text{RP}^* \) for \(l = 1, \ldots, m \), is determined as follows.

\[
\beta_{ij} = \begin{cases}
0, & \text{if } \overline{b}_j > 0, \text{ where } \overline{b}_j = b_j - \sum_i x_{ij}, \\
\infty, & \text{if } \overline{b}_j = 0,
\end{cases}
\]

\[
\alpha_l = \min_{j(x_{ij} < e_{ij})} (d_{ij} + \beta_{ij}),
\]

\[
\beta_{ij} = \min \{ \beta_{ij}, \min_{i(x_{ij} > 0)} (\alpha_l - d_{ij}) \},
\]

\[
\begin{dcases}
\bar{u}_i = \alpha_l, \\
\bar{v}_j = \beta_{ij}.
\end{dcases}
\]

d. Optimal solution of \(\text{RD}^* \) is determined as follows. When we represent \(u_l \) in the form \(\sum \pm d_{ij} \), if \(+d_{ij} \) resp. \(-d_{ij} \) appears in \(\sum \pm d_{ij} \), then we put \(\xi_{ij}^l = 1 \) resp. \(\xi_{ij}^l = -1 \), otherwise \(\xi_{ij}^l = 0 \).

e. Determination of \(\theta_i \)'s

We determine \(\theta_i \) under the conditions

\[
\sum_{l=1}^{m} \theta_i \sum_{i} \xi_{ij}^l \leq b_j, \quad \text{if } \overline{b}_j > 0,
\]

\[
\sum_{i} \theta_i x_{ij} \leq -e_{ij}, \quad \text{if } x_{ij} > 0,
\]

\[
\sum_{i} \theta_i x_{ij} \leq e_{ij} - x_{ij}, \quad \text{if } x_{ij} < e_{ij}
\]

and \(\theta_i \geq 0 \), making \(\sum \theta_i \) as large possible.

f. To change flows

\[
\mu_i \text{ change to } \mu_i + \theta_i
\]

\[
x_{ij} \text{ change to } x_{ij} + \sum_i \xi_{ij}^l \theta_i
\]
Primal Dual Method of Parametric Programming

\[\sum x_{ij} \cdot d_{ij} \text{ change to } \sum x_{ij} \cdot d_{ij} + \sum \theta_i \sum \xi_{ij} \cdot d_{ij}. \]

Remark 1. As easily seen, \(\sum \xi_{ij} = 0 \) or 1 for \(j \) such that \(\overline{b}_j > 0 \), \(\sum \theta_i \sum \xi_{ij} \leq \overline{b}_j \) are very simple form, but the author is not aware of any simple algorithm other than simplex method to determine \(\theta_i \)'s.

Remark 2. The Hitchcock problem can be treated as a one-parameter problem \(P^*|\mu \) and \(D^*|\mu \) dealt with in 3.2, by adding another source node \(o \) and \(m \) branches \((01), \ldots, (om)\) related to it. An optimal solution of \(RP^*|\mu \) is given by \(u_i \) and \(v_j \) found in \(C \) together with \(u_0 = \min u_i \) where \(a_i = a_i - \sum x_{ij} \). While that of \(RD^*|\mu \), \(\xi_{ij}^{(o)} \) is equal to \(\xi_{ij} \) with \(l \) for which \(u_0 = u_l \). Further, an optimal solution of \(D^*|\mu + \theta \) is given by \(x_{ij} + \theta \xi_{ij}^{(o)} \). \(\theta_0 \) is characterized as the maximal \(\theta \) satisfying \(\theta \sum \xi_{ij}^{(o)} \leq \overline{b}_j \) for \(j \) such that \(\overline{b}_j > 0 \), and \(0 \leq x_{ij} + \theta \xi_{ij}^{(o)} \leq c_{ij} \).

Values of \(d_{ij}, c_{ij} \) in capacitated Hitchcock Problem are given as follows.

Table of \(d_{ij}, a_i \),

<table>
<thead>
<tr>
<th>(b_i)</th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>9</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
<td>20</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Table of \(c_{ij} \)

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>5</th>
<th>5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Step 0 Initial solution of \(x_{ij} \) and \(\mu_i \)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Step 1.

The case solved as a multi-parametric problem

(a) \(u_i = \sum \pm d_{ij}, \quad u_1 = d_{13}, \quad u_2 = d_{21}, \quad u_3 = d_{31} \)

(b) conditions for \(\theta \)'s

\[
\begin{align*}
\sum_{i=1}^{m} \theta_i \sum_{j} \xi_{ij}^{(t)} &\leq b_j \quad \text{for} \quad b_i > 0 \\
\theta_2 + \theta_3 &\leq 3, \quad \theta_1 \leq 4 \\
\sum_{j} \theta_i \xi_{ij}^{(t)} &\leq -x_{ij} \quad \text{for} \quad x_{ij} > 0 \\
\sum_{i} \theta_i \xi_{ij}^{(t)} &\leq c_{ij} - x_{ij} \quad \text{for} \quad c_{ij} - x_{ij} > 0 \\
\theta_1 &\leq 5 \quad \theta_2 \leq 1 \quad \theta_3 \leq 3 \\
\theta_i &\leq a_i \\
\theta_1 &\leq 9 \quad \theta_2 \leq 4 \quad \theta_3 \leq 8
\end{align*}
\]

(c) determination of \(\theta_i \) and next \(\mu_i \)

\[
\begin{align*}
\theta_1 = 4, \quad \theta_2 = 1, \quad \theta_3 = 2 \\
\mu_1 = 4, \quad \mu_2 = 1, \quad \mu_3 = 2
\end{align*}
\]

(d) change of \(x_{ij} \)

\[
\begin{align*}
x_{ij} &\rightarrow x_{ij} + \sum_{t} \theta_t \xi_{ij}^{(t)} \\
x_{13} = 4, \quad x_{21} = 1, \quad x_{31} = 2
\end{align*}
\]
Primal Dual Method of Parametric Programming

<table>
<thead>
<tr>
<th>μ_i</th>
<th>b_j</th>
<th>\bar{a}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Sept 2
(a) $u_1 = d_{14}$, $u_2 = d_{25}$, $u_3 = d_{35}$
(b) $\theta_1 \leq 6$, $\theta_2 + \theta_3 \leq 3$, $\theta_1 \leq 5$, $\theta_2 \leq 1$, $\theta_3 \leq 3$
(c) $\theta_1 = 5$, $\theta_2 = 0$, $\theta_3 = 3$
(d) $x_{14} = 5$, $x_{25} = 0$, $x_{35} = 3$, $\mu_1 = 9$, $\mu_2 = 1$, $\mu_3 = 5$

<table>
<thead>
<tr>
<th>μ_i</th>
<th>b_j</th>
<th>\bar{a}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 3
(a) $u_1 = d_{15} + d_{31} + d_{22} - d_{21} - d_{35}$,
$u_2 = d_{22}$,
$u_3 = d_{31} + d_{22} - d_{21}$

(1) ξ_{ij}

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 \\
\end{bmatrix}
\]
(2) \(\xi^2_{ij} \)

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

(3) \(\xi^3_{ij} \)

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

(b) \(\theta_1 + \theta_2 + \theta_3 \leq 5, \quad -\theta_1 - \theta_2 \geq -1, \quad -\theta_1 \geq -3 \)

\(\theta_1 \leq 1, \quad \theta_1 + \theta_3 \leq 1, \quad \theta_1 + \theta_2 + \theta_3 \leq 8, \quad \theta_1 \leq 0, \quad \theta_2 \leq 3, \quad \theta_3 \leq 3 \)

(c) \(\theta_1 = 0, \quad \theta_2 = 3, \quad \theta_3 = 1 \)

\(\mu_1 = 9 + 0 = 9, \quad \mu_2 = 1 + 3 = 4, \quad \mu_3 = 5 + 1 = 6 \)

(d) \(x_{35} = 0 + 0 = 0, \quad x_{31} = 2 + 1 = 3, \quad x_{22} = 0 + 3 + 1 = 4 \)

\(x_{21} = 1 - 1 = 0, \quad x_{35} = 3 - 0 = 3. \)

\[
\begin{array}{c|ccccc}
\mu_i & 0 & 1 & 0 & 1 & 0 \\
\hline
9 & 0 & 0 & 0 & 4 & 5 \\
4 & 0 & 0 & 4 & 0 & 0 \\
6 & 2 & 3 & 0 & 0 & 0 \\
\end{array}
\]

Sept 4

(a) \(u_1 = d_{14}, \quad u_2 = d_{22}, \quad u_3 = d_{34} \)

(b) \(\theta_2 \leq 1, \quad \theta_3 \leq 1, \quad \theta_1 \leq 0, \quad \theta_2 \leq 4, \quad \theta_3 \leq 2, \quad \theta_1 \leq 0, \quad \theta_2 \leq 0, \quad \theta_3 \leq 2 \)

(c) \(\theta_1 = 0, \quad \theta_2 = 0, \quad \theta_3 = 1, \)

\(\mu_1 = 9, \quad \mu_2 = 4, \quad \mu_3 = 7 \)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Primal Dual Method of Parametric Programming

(d) \(x_{34} = 0 + 1 = 1 \)

\[\begin{array}{c|c|ccccccc} \mu_i & \overline{b_j} & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 9 & 0 & 0 & 0 & 4 & 5 & 0 \\ 4 & 0 & 0 & 4 & 0 & 0 & 0 \\ 7 & 1 & 3 & 0 & 0 & 1 & 3 \\ \end{array} \]

Step 5

(a) \(u_1 = \overline{d_{12}} \quad u_2 = \overline{d_{22}} \quad u_3 = \overline{d_{32}} \)

(b) \(\theta_1 + \theta_2 + \theta_3 \leq 1 \)

\[\begin{align*} \theta_1 & \leq 3, \quad \theta_2 \leq 4, \quad \theta_3 \leq 1, \quad \theta_1 \leq 0, \quad \theta_2 \leq 0, \quad \theta_3 \leq 1 \\ \end{align*} \]

(c) \(\theta_1 = 0, \quad \theta_2 = 0, \quad \theta_3 = 1, \quad \mu_1 = 9, \quad \mu_2 = 4, \quad \mu_3 = 8 \)

(d) \(x_{32} = 0 + 1 = 1 \)

\[\begin{array}{c|c|ccccccc} \mu_i & \overline{b_j} & 0 & 0 & 0 & 0 & 0 & \theta \\ \hline 9 & 0 & 0 & 0 & 4 & 5 & 0 \\ 4 & 0 & 0 & 4 & 0 & 0 & 0 \\ 8 & 0 & 3 & 1 & 0 & 1 & 3 \\ \end{array} \]

Step 1

The case solved as a single parametric problem

(a) \(u_0 = \sum \pm \overline{d_{ij}} \quad u_0 = u_0 = \overline{d_{31}} \)

(b) \(\theta_0 = \text{maximum} \ \theta \ \text{such that} \)

\[\begin{align*} \theta & \sum_i \overline{x_{ij}^{(o)}} \leq \overline{b_j} \quad \text{for} \ \overline{b_j} > 0 \quad \text{and} \quad \theta \bar{x_{ij}^{(o)}} \geq -x_{ij} \quad \text{for} \ \bar{x_{ij}^{(o)}} < 0 \\ \end{align*} \]

and \(\theta \bar{x_{ij}^{(o)}} \leq \bar{c_{ij}} - x_{ij} \quad \text{for} \ \bar{x_{ij}^{(o)}} > 0 \quad \theta_0 = 3 \).
Step 2
(a) \(u_0 = u_3 = d_{35} \)
(b) \(\theta_0 = 3 \)
(c) \(\mu = 3 + 3 = 6, \quad x_{35} = 0 + 3 = 3 \)

<table>
<thead>
<tr>
<th>(\bar{a}_i)</th>
<th>(0)</th>
<th>5</th>
<th>4</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 3
(a) \(u_0 = u_1 = d_{13} \)
(b) \(\theta_0 = 4 \)
(c) \(\mu = 6 + 4 = 10, \quad x_{13} = 0 + 4 = 4 \)

<table>
<thead>
<tr>
<th>(\bar{a}_i)</th>
<th>0</th>
<th>5</th>
<th>0</th>
<th>6</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Step 4
(a) \(u_0 = u_1 = d_{14} \)
(b) \(\theta_0 = 5 \)
(c) \(\mu = 10 + 5 = 15, \quad x_{14} = 0 + 5 = 5 \)

\[
\begin{array}{c|cccccc}
\bar{b}_j & 0 & 5 & 0 & 1 & 0 \\
\hline
\bar{a}_i & & & & & \\
0 & 0 & 0 & 4 & 5 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 & 3 \\
\end{array}
\]

Step 5
(a) \(u_0 = u_3 = d_{34} \)
(b) \(\theta_0 = 1 \)
(c) \(\mu = 15 + 1 = 16, \quad x_{34} = 0 + 1 = 1 \)

\[
\begin{array}{c|cccccc}
\bar{b}_j & 0 & 5 & 0 & 0 & 0 \\
\hline
\bar{a}_i & & & & & & \\
0 & 0 & 0 & 4 & 5 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 1 & 3 \\
\end{array}
\]

Step 6
(a) \(u_0 = u_2 = d_{22} \)
(b) \(\theta_0 = 4 \)
(c) \(\mu = 16 + 4 = 20, \quad x_{22} = 0 + 4 = 4 \)

\[
\begin{array}{c|cccccc}
\bar{b}_j & 0 & 1 & 0 & 0 & 0 \\
\hline
\bar{a}_i & & & & & & \\
0 & 0 & 0 & 4 & 5 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 1 & 3 \\
\end{array}
\]
Step 7

(a) $u_0 = u_3 = d_{32}$
(b) $\theta_0 = 1$
(c) $\mu = 20 + 1 = 21, \quad x_{32} = 0 + 1 = 1$

<table>
<thead>
<tr>
<th></th>
<th>b_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES