NOTE ON THE CRITICAL PATH ANALYSIS FOR A PROJECT WITH A DIVISIBLE ACTIVITY

TAKASHI KOBAYASHI

Faculty of Engineering, University of Tokyo

(Received March 30, 1967)

In a paper published in JORSA Vol. 13 (1965), W. S. Jewell [2] presented an algorithm for minimizing the total duration of a project with a divisible activity. The mathematical formulation of the problem is as follows:

Minimize \(t \),
subject to
\[
\begin{align*}
 v_j - v_i & \geq T_{ij}, & \text{for } (i, j) & \in \overline{D}, \\
 v_j - v_i - t_{ij} & \geq 0, & \text{for } (i, j) & \in D, \\
 t_{ij} & \geq 0, \\
 \sum_{(i, j) \in D} t_{ij} & \geq U, \\
 v_N - v_1 - t & = 0,
\end{align*}
\]

where \(\overline{D}, D, U, T \)'s are given.

He considered the following parametric programming problem \(P|Q \) and its dual one \(D|Q \).

\(P|Q: \) Minimize \((Qt - \sum_{D} t_{ij}) \),
subject to
\[
\begin{align*}
 v_j - v_i & \geq T_{ij}, & \text{for } (i, j) & \in \overline{D}, \\
 v_j - v_i - t_{ij} & \geq 0, & \text{for } (i, j) & \in D, \\
 t_{ij} & \geq 0, \\
 v_N - v_1 - t & = 0.
\end{align*}
\]
His algorithm consists of two parts, that is, the starting procedure for finding an initial solution of $D|Q$ for a sufficiently large positive Q, and the minimal-flow subroutine for decreasing Q so as to allocate more time to the divisible activity. The latter is one of the primal-dual algorithms. The procedure is terminated when $\sum_{D} t_{ij}$ reaches U, since it is proved in [2] that if an optimal solution of $D|Q$ for some Q, (v_{i}, t_{ij}, t), satisfies that $\sum_{D} t_{ij}=U$, then it is also optimal to the original problem.

Here, the author suggests that the usual CPM (critical path method) is directly applicable to the problem without introducing a modified algorithm. We consider the following parametric programming problem $D^{*}|T$ and its dual one $P^{*}|T$.

\[D^{*}|T: \text{Maximize } \sum_{D} t_{ij},\]

subject to

\[v_{j} - v_{i} \geq T_{ij}, \quad \text{for } (i,j) \in \overline{D},\]

\[v_{j} - v_{i} - t_{ij} \geq 0, \quad M \geq t_{ij} \geq 0, \quad M \geq t_{ij} \geq 0, \quad v_{N} - v_{1} = T,\]

where M is a sufficiently large positive number.

\[P^{*}|T: \text{Minimize } [T q + M \sum_{D} y_{ij} - \sum_{D} T_{ij} x_{ij}],\]
Note on the Critical Path Analysis

subject to \[x_{ij} \geq 0, \quad \text{for } (i, j) \in DU \overline{D}, \]
\[y_{ij} \geq 0, \quad \text{for } (i, j) \in D, \]
\[\sum_{(i, j) \in DU \overline{D}} x_{ij} - q = 0, \]
\[\sum_{(i, j) \in DU \overline{D}} x_{ij} - \sum_{j \in DU \overline{D}} x_{ji} = 0 \quad (i = 2, 3, \ldots, N-1), \]
\[\sum_{(i, j) \in DU \overline{D}} x_{jN-q} = 0, \]
\[x_{ij} + y_{ij} \geq 1, \quad \text{for } (i, j) \in D. \]

If \(T < M \), the condition that \(M \geq t_{ij} \geq 0 \) for \((i, j) \in D\), may be replaced by the condition that \(t_{ij} \geq 0 \) for \((i, j) \in D\), in \(D^*|T \) and \(y \)'s may be neglected in \(P^*|T \). Hence, from Proposition 2.1. of Kurata [4], it is proved that if \((v_i, t_{ij})\) resp. \((x_{ij}, y_{ij}, q)\) is the optimal solution of \(D^*|T \) resp. \(P^*|T \) for \(T < M \), \((v_i, t_{ij}, t = T)\) resp. \((x_{ij})\) is the optimal solution of \(P|Q = q \) resp. \(D|Q = q \). Furthermore, \(D^*|T \) is equivalent to one of the usual CPM problems:

Maximize \(\sum_P c_{ij} t_{ij}, \)

subject to \[v_j - v_i - t_{ij} \geq 0, \quad \text{for } (i, j) \in P, \]
\[D_{ij} \geq t_{ij} \geq d_{ij}, \quad \text{for } (i, j) \in P, \]
\[v_N - v_1 = T, \]

when \(P = DU \overline{D}, \)
\[D_{ij} = \begin{cases} M, & \text{for } (i, j) \in D, \\ T_{ij}, & \text{for } (i, j) \in \overline{D}, \end{cases} \]
\[d_{ij} = \begin{cases} 0, & \text{for } (i, j) \in D, \\ T_{ij}, & \text{for } (i, j) \in \overline{D}, \end{cases} \]
\[c_{ij} = \begin{cases} 1, & \text{for } (i, j) \in D, \\ 0, & \text{for } (i, j) \in \overline{D}. \end{cases} \]
So, we can obtain an optimal solution of the original problem by applying the usual CPM to $D^*|T$. In this case we can easily find a solution of $P^*|T=\infty$, as an initial solution, which is as follows:

$$x_{ij}=0 \quad \text{for} \quad (i,j) \in DU\bar{D},$$

$$y_{ij}=1 \quad \text{for} \quad (i,j) \in D,$$

$$q=0.$$

And by decreasing T, less time will be allocated to the divisible activity in the reverse order of Jewell’s, and the procedure is terminated when $\sum_{D} t_{ij}$ reaches U.

References

