MINIMAX POLICIES FOR THE PRODUCTION
OF SEASONAL STYLE-GOODS

JUNICHI NAKAGAMI, Chiba University
(Received June 18, 1974; Revised May 24, 1975)

ABSTRACT

The problem considered in this note deals with the optimal minimax policies for the sequential production problem in which seasonal style-goods are produced in anticipation of the actual demand in future, when the production cost and the anticipated demand in each period follow arithmetic random walks. Also after the actual demand is known, terminal costs representing overage and underage costs are incurred at the terminal period.

1. INTRODUCTION

Hausman [1] has considered the related problem for style-goods which has a forecasting mechanism. In general, as mentioned in [1], if a minimization of expected costs is used as an optimality criterion, the problem under consideration here becomes more intractable. Then the form of the optimal policy may be obtained, but the entire optimal policy can be obtained only in tabular form. Now, this note considers the model in which an explicit expression for the optimal policy is obtained, using the minimax criterion and arguments given by Pye [2], [3].
2. MINIMAX POLICY

To derive a minimax policy for producing seasonal style-goods we will use the following notations and assumptions. Assume that there are \(n + 1 \) periods which production decisions can be made at the beginning of. The first such period is numbered \(n \) and the terminal period zero. Let \(p_i, n \geq i \geq 0 \), denote the unit production cost in period \(i \). Let \(x_i, n \geq i \geq 0 \), represent the anticipated demand for goods, with the anticipation made at the beginning of period \(i \), and \(x_0 \) be specially the actual demand for goods. In this note we assume that \(\{x_i\}, \{p_i\} \) follow arithmetic random walks, i.e.,

\[
(1) \quad x_i = x_{i+1} + \Delta x_{i+1}, \quad p_i = p_{i+1} + \Delta p_{i+1} \quad (i = n-1, \ldots, 1, 0),
\]

where \(\{\Delta x_i\}, \{\Delta p_i\} \) are sequences of random variables, and whose changes satisfy

\[
-\Delta x \leq \Delta x_i \leq \Delta x, \quad -\Delta p \leq \Delta p_i \leq \Delta p.
\]

The parameters \(\Delta x, \Delta p \) and \(\Delta x, \Delta p \) are taken to correspond to the maximum possible decreases and increases respectively, and we assume that \(p_n - n\Delta p \geq 0 \). Let \(z_i \) be the amount of inventory before production is made at period \(i \) \((z_n \leq z_{n-1} \leq \cdots \leq z_0)\).

Also to define terminal costs let:

\[
c_o(z) = \text{average costs (i.e., the cost of the excess amount } z \text{ of inventory over demand after the actual demand is known and the production is made at the terminal period).}
\]

\[
c_u(z) = \text{underage costs (i.e., the cost of the excess amount } z \text{ of demand over inventory after the actual demand is known and the production is made).}
\]

And we assume that \(c_o(\cdot) \) and \(c_u(\cdot) \) are convex, increasing, continuous and vanishing at the origin.

The problem is to characterize the production decision procedure which minimizes the maximum possible value of total costs. Now define the usual recursive function in dynamic programming as follows:

\[
f_i(z, x, p) = \text{minimax costs incurred from the beginning of period } i \text{ through period } 0, \text{ given that the current state } (z_i, x_i, p_i) = (z, x, p) \text{ and that optimal minimax policies are used henceforth.}
\]

Then following relation holds at the terminal period when given state is \((z, x, p)\):

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Minimax Policies for Producing Seasonal Style-Goods

\[f_0(z,x,p) = \min_{w \geq z} \left\{ p(w-z) + c_u((x-w)^+) + c_o((w-x)^+) \right\} \]

where \(x^+ = \max(0,x) \). This equation indicates that an optimal policy in period 0 is simply obtained by producing the smallest amount of goods so as to minimize the terms in brackets since the actual demand has been written as a perfect anticipation \(x \). And that it is to produce \((x+\tilde{\alpha}(p)-z)^+\) where \(\tilde{\alpha}(p) \) is the largest value with that satisfies \(c_u'(-\tilde{\alpha}(p)) = p \). For an inducational convenience, we express \(f_0(z,x,p) \) as follows:

\[(2) \quad f_0(z,x,p) = \int_0^{(x-z)^+} \min\{p, c_u'(t)\} dt + \int_0^{(z-x)^+} c_o'(-t) dt . \]

By the principle of optimality, the general recurrence relation for period \(i \) when given state is \((z,x,p)\) would be written as:

\[(3) \quad f_i(z,x,p) = \min_{w \geq z} \max \left\{ f_{i-1}(w, x+\Delta x, p+\Delta p) + p(w-z) \right\} \]

\[= \max \left\{ f_{i-1}(w, x+\Delta x, p+\Delta p) + p(w-z) \right\} \]

\((i = 1,2,\cdots,n) \).

Our objective of this note is to show that the optimal policy in each period is characterized by a single critical level (see Theorem 2) and to develop quantitative results describing the variation of the critical level as a function of the anticipated demand and the unit production cost in its period. Then we give two theorems without proof, which are familiar to us in inventory problem.

Theorem 1. (a) \(f_i(z,x,p) \) is convex in \(z \) and \(x \) given \(p \) for all \(i \).
(b) \(f_i(z,x,p) \) is nondecreasing function of \(p \) given \(z \) and \(x \) for all \(i \).

Proof. Induction. (a): Similar proof is given in [2].

Theorem 2. At any period \(i \) optimal minimax policies are of the form:

Produce \((z_i^*(x,p)-z)^+\), where \(z_i^*(x,p) \) is the smallest value \(w \) that minimizes \(g_i(w\mid z,x,p) \).

Proof. A simple consequence of the theorem 1 (a).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
In section 3, we will determine the critical level \(z_1^*(x,p) \) explicitly, which characterizes the optimal minimax policy given by the theorem 2, and examine its dependence on \(x,p \).

And notice that if we use as an optimality criterion a minimization of expected cost instead of a minimax criterion then we would define \(f_1(z,x,p) \) which satisfies the theorem 1 (a), i.e., the theorem 2. So that the form of an optimal policy would be same as given by the theorem 2.

3. ONE-PERIOD PROBLEM

By (2), (3),

\[
\begin{align*}
g_1(w|z,x,p) &= \max \left[\int_0^{x+\Delta x-w} \min(p+\Delta p, c_u'(t)) dt \right. \\
&\quad + \int_0^{w-x-\Delta x} c_o'(t) dt + p(w-z) \bigg] \\
&= \max \left[\int_0^{x+\Delta x-w} \min(p+\Delta p, c_u'(t)) dt , \\
&\quad \int_0^{w-x+\Delta x} c_o'(t) dt \right] + p(w-z) \quad \text{(by the theorem 1)}.
\end{align*}
\]

Define three numbers \(a_1(p) \), \(c_1(p) \) and \(c_1(p) \) by:

\[
\int_0^{\Delta x-a_1(p)} \min(p+\Delta p, c_u'(t)) dt = \int_0^{\Delta x+a_1(p)} c_o'(t) dt
\]

\[
c_1(p) = c_0(\Delta x+a_1(p)) , \quad c_u'(\Delta x-a_1(p)) = p ,
\]

and if \(c_u'(0) > p \) then \(a_1(p) = \Delta x \), if \(c_u'(\infty) < p \), \(a_1(p) = -\infty \). Where \(-a_1 \) is the largest value of above equation. And notice that \(a_1(p) \), \(c_1(p) \) are nondecreasing in \(p \) and \(c_1(p) \) is nonincreasing in \(p \). We illustrate those numbers by Fig.1.

Case 1, \(a_1 \leq a_1 \). By the definition of numbers, \(g_1(w|z,x,p) \) reaches its minimum at \(w = x+a_1 \), then \(z_1^*(x,p) = x+a_1 \).

For \(z < z_1^* \); by (4),

\[
f_1(z,x,p) = c_1 + p(a_1+x-z),
\]

for \(z \geq z_1^* \);

\[
f_1(z,x,p) = \int_0^{z-x+\Delta x} c_o'(t) dt = c_1 + \int_0^{z-x-a_1} c_o'(t+\Delta x+a_1) dt.
\]
Minimax Policies for Producing Seasonal Style-Goods

Fig. 1 Definition of numbers \(a_1, \tilde{a}_1 \) and \(c_1 \): Case 2, \(a_1 > \tilde{a}_1 \).

Case 2, \(a_1 > \tilde{a}_1 \). By the definition of numbers, \(g_1(w|z,x,p) \) reaches its minimum at \(w = x+\tilde{a}_1 \), then \(z_1^*(x,p) = x+\tilde{a}_1 \).

For \(z < z_1^* \); by (4),

\[
 f_1(z,x,p) = \int_{0}^{x+\Delta x-z} \min(p+\Delta p, c_u'(t))dt + p(\tilde{a}_1 + x - z)
\]

\[
 = c_1 + \int_{\Delta x-\tilde{a}_1}^{x+\Delta x-z} c_u'(t)dt + p(\tilde{a}_1 + x - z) \quad \text{(since } c_u'(t) > p \text{ for } t < x+\tilde{a}_1) \]

\[
 = c_1 + \int_{0}^{x+\Delta x-z} \min(p, c_u'(t+\Delta x-\tilde{a}_1))dt \quad \text{(since } c_u'(t) < p \text{ for } t > x+\tilde{a}_1) \],

for \(z_1^* \leq z < x+\tilde{a}_1 \);
for $a_1+ x \leq z$;

$$f_1(z, x, p) = \int_0^{z-x+\Delta x} c_o'(t)dt = c_1 + \int_0^{z-x-a_1} c_o'(t+\Delta x+a_1)dt.$$

Therefore, summarizing Case 1 and 2, we have;

$$z_1^*(x, p) = x + \min(a_1(p), \bar{\alpha}_1(p))$$

$$f_1(z, x, p) = \int_0^{(x+a_1(p)-z)^+} \min[p, c_u'(t+\Delta x-a_1(p))]dt$$

$$+ \int_0^{(z-x-a_1(p))^+} c_o'(t+\Delta x+a_1(p))dt + c_o(\Delta x+a_1(p))$$

Notice that f_1 is same type of function as f_0.

4. THE n-PERIOD PROBLEM

In this section no proofs are presented since they are similar to proofs stated before. In order to describe the critical level $z_n^*(x, p)$ in an n-period problem, define the real numbers $a_n(p), \bar{\alpha}_n(p)$ by:

$$\int_0^{\Delta x-a_n(p)} \min[p+\overline{\Delta p}, c_u'(t+(n-1)\Delta x-A_{n-1}(p+\overline{\Delta p}))]dt$$

$$= \int_0^{\Delta x+a_n(p)} c_o'(t+(n-1)\Delta x+A_{n-1}(p+\overline{\Delta p}))dt,$$

$$c_u'(n\Delta x-A_{n-1}(p+\overline{\Delta p})-\bar{\alpha}_n(p)) = p$$

and if $c_u'(0) > p$ then $\bar{\alpha}_n(p) = n\Delta x-A_{n-1}(p+\overline{\Delta p})$, if $c_u'(0) < p$, $\bar{\alpha}_n(p) = -\infty$, and where $-\bar{\alpha}_n$ is the largest value of equation, $A_n(p) = \sum_{i=1}^{n} a_i(p+(n-i)\overline{\Delta p})$.

Now we can express the critical level $z_n^*(x, p)$ and the minimax cost $f_n^*(x, x, p)$ in the n-period problem as follows;

(5) $z_n^*(x, p) = x + A_{n-1}(p+\overline{\Delta p}) + \min(a_n(p), \bar{\alpha}_n(p))$.

(6) $f_n^*(x, x, p) = \int_0^{(x+A_n(p)-z)^+} \min[p, c_u'(t+n\Delta x-A_n(p))]dt$

$$+ \int_0^{(z-x-A_n(p))^+} c_o'(t+n\Delta x+A_n(p))dt + c_o(n\Delta x+A_n(p)).$$

We must not conjecture that the critical levels are nondecreasing functions of p as well as x simply. On the basis of examples it appears that they are much sensitive to the form of the terminal cost function.
Then three straightforward but interesting examples of above results are given by the following:

Example 1. (Positive influence) If $c_u'(\cdot) = c_u$, $c_o'(\cdot) = c_o$, put

$$a(p) = \frac{\min(p+\delta p, c_u(\Delta x) - c_o \Delta x)}{\min(p+\delta p, c_u) + c_o}$$

$$c(p) = \frac{\min(p+\delta p, c_o(\Delta x+\delta x))}{\min(p+\delta p, c_o) + c_o}$$

$$A_n(p) = \sum_{i=1}^{n} a(p + (n-i) \Delta p), \quad C_n(p) = \sum_{i=1}^{n} c(p + (n-i) \Delta p).$$

We have

$$z^*(x,p) = x + A_n(p)$$

$$f_n(z,x,p) = \min(p,c_u)(x+A_n(p)-z) + c_o(z-x-A_n(p))^+ + C_n(p).$$

Note that the critical levels are nondecreasing in p on $(0,c_u)$, and at any period n an optimal minimax policy is to produce $(x+A_n(p)-z)$ if $p < c_u$ or not to produce if $p \geq c_u$.

Example 2. (Indifferent influence) If $c_u'(\cdot) = c_u$, $c_o'(\cdot) = 0$.

We have

$$z^*(x,p) = x + n \Delta x$$

$$f_n(z,x,p) = \min(p,c_u)(x+n \Delta x-z)^+.\)$$

Note that the critical levels are constant in p on $(0,c_u)$, and at any period n an optimal minimax policy is to produce $(x+n \Delta x-z)^+$ if $p < c_u$ or not to produce if $p \geq c_u$.

Example 3. (Negative influence) If $c_o'(\cdot) = 0$, and as defined in section 2, $-\hat{a}(p)$ is the largest value with that satisfies $c_u'(-\hat{a}(p)) = p$.

We have

$$z^*(x,p) = x + n \Delta x + \hat{a}(p),$$

$$f_n(z,x,p) = \int_0^{(x+n \Delta x-z)^+} \min(p,c_u'(t)) dt.$$\)

Note that the critical levels are nonincreasing in p, and at any period n an optimal minimax policy is to produce $(x+n \Delta x+\hat{a}(p)-z)^+$.\)
Acknowledgement

The author expresses his thanks to Professor M. Sakaguchi of Osaka University for his helpful discussions and suggestions.

References

Junichi Nakagami: Department of Mathematics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Chiba-city, Japan.