ABSTRACT

SOME APPLICATIONS OF RELIABILITY ANALYSES OF STANDBY REDUNDANT SYSTEMS WITH REPAIR

Michikazu Kumagai , Toshiba Research & Development Center

Some applications are discussed concerning reliability analyses of a standby redundant system with repair. The system consists of a series subsystem composed of \(N \) identical units and \(n \) spares. Failed units are assumed to be repaired by \(r \) repair facilities and repaired units join the spares. For this system, two cases which can be analyzed by means of the semi-Markov process method are considered. The first case is the system with \(N = 1 \) in which the failure time distribution of a unit is general and the repair time distribution is exponential. The second one is the case with \(r = 1 \) where a unit has an exponential failure time and a general repair time distribution.

An application of the first model to an ion source system for a particle accelerator is investigated. The second model is applied to a centrifuge uranium enrichment plant, error correcting terminals for an automatic newspaper editing system, and an autobus system. The general distribution is assumed to be a gamma distribution in the applications. For a proton synchrotron, a proposal to use a redundant ion source system in a design study reported in 1965, when the life time of a duoplasmatron ion source was not long enough, is investigated. Concerning a cascade system of uranium enrichment centrifuges, a production plant composed of 100,000 centrifuges is proposed to be divided into 20 groups, each of which consists of 5,000 centrifuges, and to have \(n \) spare groups. An example of a bus company office possessing \(N + n + 2 = 61 \) buses is discussed, where \(N \), \(n \) and 2 of them are in operation, spares, and in regular maintenance, respectively. A failed bus which is substituted by a spare one is repaired in temporary maintenance.

The number of spares needed to attain to a target value of the mean time to system failure (MTSF) is obtained for a given repair capacity.