AN INVERSE CONTROL PROCESS AND AN INVERSE ALLOCATION PROCESS

Seiichi Iwamoto
Hiroshima University

Abstract An inverse theory of sequential decision processes, including the standard control process and allocation process, is developed. A finite-stage deterministic invertible (main) dynamic program (DP) whose reward functions depend not only on action but also on state is formulated as a sequential decision process. The main DP is transformed into an equivalent inverse DP by an algebraic inversion. The main DP maximizes a generalized total reward, while the inverse DP minimizes a generalized total state. An inverse theorem is established. It characterizes optimal solutions (optimal reward functions and optimal policy) of inverse DP by those of main DP through inverse and composition. The main DP includes a linear equation and quadratic criterion (main) control process on the half-line and a typical multi-stage (main) allocation process. Therefore, the inverse DP generates an inverse control process and an inverse allocation process, respectively. Not solving the recursive equation directly but applying the inverse theorem, optimal solutions of both inverse processes are easily calculated by use of those of the corresponding main processes.

1. Introduction

Recently Iwamoto [5], [6], [7], [8], [9] has developed an inverse theory of dynamic programs which is applicable to a number of mathematical programming problems with a single constraint-function. As will be shown at the concluding remarks, the well-known linear equation and quadratic criterion control problem and the multi-stage allocation problem are transformed into equivalent mathematical programming problems with no constraint-function and multiple constraint-functions, respectively. Therefore, the inverse theory is not applicable to control and allocation problems. Furthermore, it makes no doubt that both are most interesting and typical problems which are formulated as sequential decision processes (see Bellman [1, Chap 1], [2, p.116], [3, p.329] and [4, p.10]). These two facts motivate the continuing interests in obtaining a "further" inverse theory for a class of sequential decision processes including control and allocation processes.
This paper deals with an inversion of finite-stage deterministic dynamic programs (DP's) on one-dimensional state space whose n-th reward function depends on state and action. These DP's are not included in those of [5], [6], [7], [8], [9]. The inverse theory is applied to a linear equation, quadratic criterion and finite-horizon control process on the state space \([0, \infty)\) and to the well-known multi-stage allocation process. This generates two new processes, i.e., an inverse control process and an inverse allocation process. As far as the author knows, both processes have never been discussed elsewhere.

Thus we have established a kind of duality theory for DP's, which is different from Bellman's duality (upper and lower bounds), quasilinearization and inverse problem [2], [4].

In §2, specifying seven components, we formulate a (main) DP as a sequential decision process. The recursive formula for the main DP is obtained. In §3, for the invertible DP, we specify an inverse DP by the components of the main DP. The recursive formula for the inverse DP is also obtained. This equation is not so well-known as the usual equations in [1]. In §4, we establish an inverse theorem between main and inverse DP's. The optimal reward functions of the inverse DP are inverse functions to those of the main DP. The main result is to apply the inverse theorem to a linear equation and quadratic criterion deterministic control process on state space \([0, \infty)\) (in §5) and to a multi-stage allocation process (in §6). Each process together with its inverse process is solved analytically.

2. Main dynamic program

Let \(R\) and \(S\) be two intervals of one-dimensional Euclidean space \(R^1\). Then note that if \(f : S \rightarrow R\) is onto strictly increasing function, then it is continuous and there exists the inverse function \(f^{-1} : R \rightarrow S\) which is onto strictly increasing. Therefore such an \(f\) yields a homeomorphism from \(S\) onto \(R\).

A dynamic program (DP) \(D\) is specified by an ordered seven-tuple \((\text{Opt, } S_1^{N+1}, R_1^{N+1}, A_1^{N}, f_1^{N}, k, T_1^{N})\), where

(i) \(N\) is a positive integer, the number of stages.

(ii) \(S_1\) is an interval of \(R^1\), the \(n\)-th state space. This element \(s_n\) is called the \(n\)-th state.

(iii) \(R_1\) is an interval of \(R^1\), the \(n\)-th reward space. This element \(r_n\) is called the \(n\)-th reward.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Inverse Control and Inverse Allocation

(iv) A_n is a non-empty subset of the n-dimensional Euclidean space \mathbb{R}^n, the n-th action space. Further there corresponds for each n-th state $s_n \in S_n$ a nonempty subset $A_n(s_n)$ of A_n, the n-th action space at state s_n. This element a_n is called the n-th action available at state s_n.

We usually write $A_n(.) : S_n \rightarrow 2^{A_n}$, where 2^{A_n} denotes the set of all nonempty subsets of the set A_n. It will be clear from the context whether A_n is considered the set or the point-to-set valued mapping.

We define the graph of the mapping $A_n(.) : S_n \rightarrow 2^{A_n}$ by

$$\text{graph}(A_n) = \{(s_n, a_n) \mid a_n \in A_n(s_n), s_n \in S_n\} \subset S_n \times A_n$$

(v) $f_n : \text{graph}(A_n) \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is an onto continuous function such that each $f_n(a_n, a_m;:) = (s_n, a_n) \in \text{graph}(A_n))$ is strictly increasing, the n-th reward function.

(vi) $k : S^{n+1} \rightarrow \mathbb{R}^{n+1}$ is an onto strictly increasing function, the terminal reward function.

(vii) $T_n : S \times A_n \rightarrow \mathbb{R}^n$ is a continuous function such that its restriction $T_n|_{\text{graph}(A_n)}$ is a function from $\text{graph}(A_n)$ to S_n, and that each $T_n(:,a_n) (a_n \in A_n)$ is strictly increasing, the n-th state transformation.

(viii) Opt is either Max or Min, the optimizer. According as $\text{Opt} = \text{Max or Min}$, it represents the optimization (maximization or minimization) problem:

\begin{align*}
\text{(2.1)} & \quad \text{Optimize } f_1(s_1,a_1; f_2(s_2,a_2; \ldots ; f_N(s_N,a_N;k(s_{N+1}))) \ldots) \\
\text{subject to} & \quad (i) \quad T_n(s_n; a_n) = s_{n+1} \quad 1 \leq n \leq N \\
& \quad (ii) \quad a_n \in A_n(s_n) \quad 1 \leq n \leq N.
\end{align*}

We call the DP \mathcal{D} the main DP. Let us now define the $(N-n+1)$-subproblem of (2.1), (2.2) by the problem:

\begin{align*}
\text{(2.3)} & \quad \text{Optimize } f_n(s_n,a_n; \ldots ; f_n(s_n,a_n;k(s_{N+1})))) \ldots) \\
\text{subject to} & \quad (i) \quad T_n(s_n; a_n) = s_{n+1} \quad 1 \leq n \leq N \\
& \quad (ii) \quad a_n \in A_n(s_n) \quad 1 \leq n \leq N, \\
\end{align*}

where $s_n \in S_n, 1 \leq n \leq N$. Let $u^{N-n+1}(s_n)$ be the optimum value of (2.3), (2.4). Further we define $u^0(s_{N+1})$ by

$$u^0(s_{N+1}) = k(s_{N+1}) \quad s_{N+1} \in S_{N+1}$$

The function $u^{N-n+1} : S_n \rightarrow \mathbb{R}_n$ is called the $(N-n+1)$-st optimal reward function.
of \mathcal{D}. Thus the functions $\{u^0, u^1, \ldots, u^N\}$ are called the optimal reward functions of \mathcal{D}. We have the recursive equation between two adjacent optimal reward functions.

Theorem 1. (RECURSIVE FORMULA FOR \mathcal{D})

\[u^{N-n+1}(s_n) = \text{Opt} \ f_n(s_n; a_n; u^{N-n}(T_n(s_n; a_n))) \quad s_n \in S_n, \]
\[a \in A_n(s_n) \quad 1 \leq n \leq N \]
\[u^0(s_{n+1}) = k(s_{n+1}) \quad s_{n+1} \in S_{n+1} \]

Proof: Easy.

3. Inverse dynamic program

For a two-variable function $h : A \times B \rightarrow C$ we define two one-variable functions $h^a : B \rightarrow C$ and $h_b : A \rightarrow C$ by

\[h^a(b) = h(a;b), \quad h_b(a) = h(a;b), \]

respectively. The main DP $\mathcal{D} = (\text{Opt}, \{s\}^N \times \{R\}^N \times \{A\}^N \times \{f\}^N \times \{k\}^N \times \{T\}^N)$

is called invertible if it has onto strictly increasing optimal reward functions $\{u^0, u^1, \ldots, u^N\}$. An inverse \mathcal{D}^{-1} to the invertible main DP \mathcal{D} is specified by the following ordered seven-tuple:

\[\mathcal{D}^{-1} = (\text{Opt}, \{R\}^{N+1} \times \{S\}^{N+1} \times \{B\}^N \times \{g\}^N \times \{l\} \times \{U\}^N) \]

where

(i) $\overline{\text{Opt}} = \text{Min}$ if $\text{Opt} = \text{Max}$

\[\text{Max} \quad \text{if} \quad \text{Opt} = \text{Min} \]

(ii) $B_n = S \times A_n$

\[B_n(r_n) = \{(s_n, a_n) \mid s_n = (u^{N-n+1})^{-1}(r_n), a_n \in A_n(s_n)\}, \]
\[f_n(s_n, a_n)^{-1}(r_n) \in R_{n+1} \]

(iii) $g_n(a_n: s_{n+1}) = (T_{na})^{-1}(s_{n+1})$

(iv) $l(r_{n+1}) = k^{-1}(s_{n+1})$

(v) $U_n(r_n; s_n, a_n) = (f_n(s_n, a_n))^{-1}(r_n)$.

We call \mathcal{D}^{-1} the inverse DP. It represents the problem:

\[(3.1) \quad \overline{\text{Optimize}} \quad g_1(a_1; g_2(a_2; \ldots; g_N(a_N; l(r_{N+1})))) \ldots) \]
Inverse Control and Inverse Allocation

subject to

(3.2) \[\begin{align*}
(1) & \quad \mathbb{E}_n (r_n ; s_n ; a_n) = r_{n+1} & 1 \leq n \leq N \\
(2) & \quad (s_n , a_n) \in B_n (r_n) & 1 \leq n \leq N.
\end{align*} \]

Note that the objective function (3.1) does not depend on the sequence of states \(\{r_n\}_n^N \). On the other hand, the n-th action at the n-th state \(r_n \) for the inverse DP \(D^{-1} \) is formally considered as a direct product \((s_n , a_n) \).

However, the first action \(s_n \) has no freedom to be selected. That is, from the definition of \(B_n (r_n) \), it is uniquely determined by the relation \(s_n = \left(u^{N-n+1}\right)^{-1} (r_n) \). This notion is not applied to the previous "inverse DP" in

\[[5], [6], [8] \text{ and } [9]. \]

Only the second action \(a_n \) is to be controlled so as to optimize (3.1).

We have the following economic interpretations. The main DP \(D \) is, given an initial state \(s_1 \), to choose the sequence of actions \(\{a_n\}_n^N \) so as to maximize a generalized total reward \(r_1 \), while the inverse DP \(D^{-1} \) is, given an initial reward \(r_1 \), to choose the sequence of actions \(\{s_n , a_n\}_n^N \) so as to minimize a generalized total state \(s_1 \). Here state corresponds to cost, manpower, energy, position (in a negative sense), post (in a negative sense), and others. These are compatible with money in a sense. Both the interpretations above for \(D \) and \(D^{-1} \) follow directly from forward and backward recursive relations

\[\begin{align*}
D : & \quad \begin{cases}
T_n (s_n ; a_n) = s_{n+1}, & a_n \in A_n (s_n) \\
f_n (s_n , a_n ; r_{n+1}) = r_n
\end{cases} & 1 \leq n \leq N \\
D^{-1} : & \quad \begin{cases}
U_n (r_n ; s_n ; a_n) = r_{n+1}, & (s_n , a_n) \in B_n (r_n) \\
g_n (a_n ; s_{n+1}) = s_n
\end{cases} & 1 \leq n \leq N
\end{align*} \]

respectively, where \(N \geq n \geq 1 \) means that the time \(n \) runs backwards \(N+1, N, \ldots, 2, 1 \).

The problem (3.1), (3.2) may also be expressed in terms of the components of \(D \) as follows:

\[\begin{align*}
(3.3) \quad \text{Optimize } & \quad (T_1 a_1)^{-1}_n \ldots (T_{N_a} a_{N_a})^{-1}_n \ldots (T_{N_a} a_{N_a})^{-1}_n k^{-1}_n (r_{N+1}) \\
\text{subject to } & \quad (i) \quad f_n (s_n , a_n)^{-1}_n (r_n) = r_{n+1} & 1 \leq n \leq N \\
& \quad (ii) \quad a_n \in A_n (s_n), \quad s_n = (u^{N-n+1})^{-1}_n (r_n) & 1 \leq n \leq N \\
& \quad (iii) \quad f_n (s_n , a_n)^{-1}_n (r_n) \in R_{n+1} & 1 \leq n \leq N.
\end{align*} \]
Similarly, the \((N-n+1)\)-subproblem of (3.1), (3.2) is defined by the problem:

\[
\begin{align*}
\text{Optimize } & g_n(a_n; \ldots ; g_N(a_N; x(N+1))) \\
\text{subject to } & (i) \quad U_m(r_m; s_m, a_m) = r_{m+1} \quad n \leq m \leq N \\
& (ii) \quad (s_m, a_m) \in B_m(r_m) \quad n \leq m \leq N,
\end{align*}
\]

where \(r_n \in \mathbb{R}_n, 1 \leq n \leq N+1\). Let \(v^{N-n+1}(r_n)\) be the optimum value of (3.5), (3.6). Further, we define \(v^0(r_{N+1})\) by

\[
v^0(r_{N+1}) = \lambda(r_{N+1}) \quad r_{N+1} \in \mathbb{R}_{N+1}.
\]

The function \(v^{N-n+1} : \mathbb{R} \rightarrow S\) is called the \((N-n+1)\)-st optimal reward function of \(D^{-1}\). Thus the functions \(\{v^0, v^1, \ldots, v^N\}\) are called the optimal reward functions of \(D^{-1}\). The recursive equation becomes as follows:

Theorem 2. (RECURSIVE FORMULA FOR \(D^{-1}\))

\[
v^{N-n+1}(r_n) = \underset{a_n \in A_n}{\text{Opt}} g_n(a_n; v^{N-n}(U_n(r_n; (u^{N-n+1})^{-1}(r_n), a_n)))
\]

\[
\begin{align*}
& a_n \in A_n((u^{N-n+1})^{-1}(r_n)) \\
& U_n(r_n; (u^{N-n+1})^{-1}(r_n), a_n) \in \mathbb{R}_{n+1}
\end{align*}
\]

where \(r_n \in \mathbb{R}_n, 1 \leq n \leq N\).

Proof: Easy.

4. Inverse theorem

In order to state an inverse theorem describing the relationship between the main DP \(D\) and the inverse DP \(D^{-1}\), let us now define an optimal policy for each DP. A *policy* of \(D\) is a sequence \(\{\pi_1, \pi_2, \ldots, \pi_N\}\) such that the mapping \(\pi_n : S_n \rightarrow A_n\) has the property \(\pi_n(s_n) \in A_n(s_n)\) for \(s_n \in S_n, 1 \leq n \leq N\). A policy \(\{\pi_1^*, \pi_2^*, \ldots, \pi_N^*\}\) is *optimal* for \(D\) if for each \(s_n \in S_n, 1 \leq n \leq N\) \(\pi_n^*(s_n)\) attains the optimum value of (2.5).

On the other hand, a *policy* of \(D^{-1}\) is a sequence \(\{\sigma_1, \sigma_2, \ldots, \sigma_N\}\) such that the mapping \(\sigma_n : \mathbb{R}_n \rightarrow A_n\) has the property \(\sigma_n(r_n) \in A_n((u^{N-n+1})^{-1}(r_n))\) and \(U_n(r_n; (u^{N-n+1})^{-1}(r_n), \sigma_n(r_n)) \in \mathbb{R}_{n+1}, 1 \leq n \leq N\). A policy \(\{\sigma_1, \sigma_2, \ldots, \hat{\sigma}_N\}\) is *optimal* for \(D^{-1}\) if for each \(r_n \in \mathbb{R}_n, 1 \leq n \leq N\) \(\hat{\sigma}_n(r_n)\) attains the
Inverse Control and Inverse Allocation

Optimum value of (3.7).

Our fundamental result is an inverse theorem in dynamic programming. The differences between the following INVERSE THEOREM and inverse theorems in [5], [6], [8], [9] and [10] are as follows. First, this paper, [5], [9] and [10] discuss sequential decision processes, while [6] and [8] do mathematical programming problems. Second, our theorem treats the case where the objective function is dependent on state sequence, while the others do the case where it is not. Finally, our theorem, as will be shown, is only applicable to control and allocation processes. The others are not. Furthermore both processes have been considered as typical sequential decision processes ([1], [2], [3] and [4]). These are main reasons why we are willing to establish an inverse theory of sequential decision process and apply it to both processes.

Theorem 3. (INVERSE THEOREM) (i) If the main DP \mathcal{D} has onto strictly increasing optimal reward functions $\{u^0, u^1, \ldots, u^N\}$ and an optimal policy $\{\pi^*_1, \pi^*_2, \ldots, \pi^*_N\}$, then the inverse DP \mathcal{D}^{-1} has onto strictly increasing optimal reward functions $\{(u^0)^{-1}, (u^1)^{-1}, \ldots, (u^N)^{-1}\}$ and an optimal policy $\{\pi^*_{1^{-1}}(u^N)^{-1}, \pi^*_{2^{-1}}(u^{N-1})^{-1}, \ldots, \pi^*_{N^{-1}}(u^1)^{-1}\}$.

(ii) Let $\{u^0, u^1, \ldots, u^N\}$ be onto strictly increasing optimal reward functions of the main DP \mathcal{D}. If the inverse DP \mathcal{D}^{-1} has onto strictly increasing optimal reward functions $\{v^0, v^1, \ldots, v^N\}$ and an optimal policy $\{\sigma^*_1, \sigma^*_2, \ldots, \sigma^*_N\}$, then it holds that

$$(v^{N-n+1})^{-1} = u^{N-n+1} \quad 1 \leq n \leq N+1.$$

Furthermore, the main DP \mathcal{D} has an optimal policy $\{\sigma^*_1 \circ (v^{-1})^{-1}, \sigma^*_2 \circ (v^{-1})^{-1}, \ldots, \sigma^*_N \circ (v^{-1})^{-1}\}$.

Proof: The proof is by induction on n. It suffices to prove the theorem only for the case $\text{Opt} = \text{Max}$. (i) Let the main DP \mathcal{D} have onto strictly increasing optimal reward functions $\{u^N\}_{n=0}^N$ and an optimal policy $\{\pi^*_n\}_{n=1}^N$. Then we have

$$(4.1) \quad u^{N-n+1}(s_n) = \max_{a \in A_n(s_n)} f_n(s_n,a_n;u^{N-n}(T_n(s_n;a_n))) $$

and

$$(4.2) \quad u^0(s_{N+1}) = k(s_{N+1}) \quad s_{N+1} \in S_{N+1}.$$
First, from the definition, we get
\[v^0(r_{N+1}) = (u^0)^{-1}(r_{N+1}) \quad r_{N+1} \in R_{N+1}. \]
Second, let us consider the case \(n = N \) of (2.5). Fix \(s_N \in S_N \). Let \(u^1(s_N) = r_N \). Then \(s_N = (u^1)^{-1}(r_N) \).

(4.2)
\[g_N(r_{N+1};s_N) = g_N(r_{N+1};s_N) \]

Let us define \(w^1(r_N) \) by
\[w^1(r_N) = \inf_{a_N \in A_N} g_N(a_N;r_{N+1}), \]
where \(r_{N+1} = u_N(r_N;s_N,a_N) \).

Hence we get \(w^1(r_N) \leq s_N \). If \(w^1(r_N) < s_N \), then there exists an \(a_N \in A_N \) such that
\[g_N(a_N;r_{N+1}) < s_N \]

where \(r_{N+1} = u_N(r_N;s_N,a_N) \), \(s_N = (u^1)^{-1}(r_N) \). Letting \(s_{N+1} = (u^1)^{-1}(r_N) \), we in turn obtain

(4.3) \[s_{N+1} < T_N(s_N;a_N) \]

(4.4) \[f_N(s_N,a_N;\hat{s}_{N+1}) = r_N \]

and

(4.5) \[u^1(s_N) = r_N. \]

Therefore the strict increasingness of \(f_N(s_N,a_N;\cdot) \) and \(k, \hat{a}_N \in A_N(s_N) \), and (4.3), (4.4) imply that
This contradicts (4.5). Hence we have $w_1(r_N) = s_N^*$. Since $s_N \in S_N$ is arbitrary, we get $w_1 = (u^*)^{-1}$. This equality together with (4.2) also implies that $(u^*)^{-1}(\pi^*_N(s_N))$ attains the minimum of (3.7) for $n = N$. Finally we get $v^1 = (u^*)^{-1}$.

In general, it is inductively shown that

$$v^{N-n+1} = (u^{N-n+1})^{-1} v^{N-n+1} = (u^{N-n+1})^{-1}$$

and that $(u^{N-n+1})^{-1}(\pi^*_n(s_n))$ attains the minimum of (3.7) for $n = N-1$, $N-2$, \ldots, 1. This completes the proof of (i).

(ii) Let the main DP V and the inverse DP V^{-1} have onto strictly increasing optimal reward functions $\{u_n^\triangleright\}_{n=0}^N$ and $\{v_n^\triangleright\}_{n=0}^N$, respectively. Then they satisfy the recursive formulas (2.5), (3.7), respectively. From the analysis in (i), it turns out that the functions $\{u^\triangleright_n\}_{n=0}^N$ also satisfy (3.7) and $(u^0)^{-1} = v^0$. This implies that $(u^{N-n+1})^{-1} = v^{N-n+1}$ namely $(v^{N-n+1})^{-1} = u^{N-n+1}$ for $1 \leq n \leq N$. The similar argument as in (i) with the roles of $\{u_n^\triangleright\}_{n=0}^N$ and $\{v_n^\triangleright\}_{n=0}^N$ exchanged leads the equality

$$v^{N-n+1}(r_n) = \min_{a \in A_n} g_n(a;v^{N-n}(U_n(r_n;(u^{N-n+1})^{-1}(r_n),a)))$$

$$= g_n(\hat{\sigma}_n(r_n);v^{N-n}(U_n(r_n;(u^{N-n+1})^{-1}(r_n),\hat{\sigma}_n(r_n))))$$

to the equality

$$v^{N-n+1}(s_n) = \max_{a \in A_n} f_n(s_n,a;v^{N-n}(T_n(s_n;a)))$$

$$= f_n(s_n,\hat{\sigma}_n(\sigma^{N-n+1})^{-1}(s_n);v^{N-n}(T_n(s_n;\hat{\sigma}_n(\sigma^{N-n+1})^{-1}(s_n)))).$$
and vice versa. Further, an optimal action at state \(s_n \) for \(V \) is
\[
a_n^* = \hat{a}_n(r_n), \quad \text{where} \quad r_n = (V_{-n+1})^{-1}(s_n),
\]
as well as \(a_n = \pi_n(s_n) \).

5. Inverse control process

Throughout this section let \(b > 0 \) and \(N \) be a positive integer. First we consider the following linear equation and quadratic criterion, finite-stage and deterministic control process (see [2, p.116])

Minimize
\[
\sum_{n=1}^{N} (x_n^2 + y_n^2) + x_{N+1}^2
\]
subject to (i) \(bx_n + y_n = x_{n+1} \), \(1 \leq n \leq N \)
(ii) \(-\infty < y_n < -\infty \), \(1 \leq n \leq N \), \(x_1 = c \).

It is well-known that this problem has a quadratic minimum value \(u_N(c) = P_N c^2 \), where \(P_N \) is determined by (5.2) which will be shown later. Note that the function \(u_N : (-\infty, \infty) \to [0, \infty) \) is not strictly increasing on \((-\infty, 0) \).

Therefore, we further assume the condition \(0 \leq x_n < \infty \) for \(1 \leq n \leq N \). This restricted problem is written in terms of state \(s_n \) and action \(a_n \) as follows :

Minimize
\[
\sum_{n=1}^{N} (s_n^2 + a_n^2) + s_{N+1}^2
\]
subject to (i) \(bs_n + a_n = s_{n+1}, \quad s_n \geq 0 \), \(1 \leq n \leq N \)
(ii) \(-\infty < a_n < \infty \), \(1 \leq n \leq N \), \(s_1 = c \).

Consider a simple inventory model with the following meanings:

\(1 - b = \) the deterioration rate of the goods, \(0 \leq b < 1 \)
\(s_n = \) the stock level at the \(n \)-th period subtracted by constant demand
\(a_n = \) the production quantity at the \(n \)-th period.

Then the interpretations for system dynamics and objective function are straightforward.

This problem is represented by an \(N \)-stage main DP \(\mathcal{D} = (\text{Min}, \{S_n^{N+1}\}, \{R_n^{N+1}\}, \{A_n\}_n^N, \{f_n\}_n^N, k, \{T_n\}_n^N) \), where
\[
S_n = R_n = [0, \infty), \quad A_n = (-\infty, \infty)
\]
\[
a_n(s_n) = [0, \infty), \quad f_n(s_n, a_n; r_{n+1}) = s_n^2 + a_n^2 + r_{n+1}
\]
\[
k(s_{N+1}) = s_{N+1}^2, \quad T_n(s_n; a_n) = bs_n + a_n.
\]
The main DP \mathcal{D} is called the \textit{main control process}. The corresponding recursive formula

$$u^{N-n+1}(s_n) = \min_{a > -b s_n} \left[s_n^2 + a_n^2 + u^{N-n}(b s_n + a_n) \right] \quad s_n \geq 0, \quad 1 \leq n \leq N$$

(5.1)

$$u^0(s_{N+1}) = s_{N+1}^2 \quad s_{N+1} \geq 0$$

has quadratic optimal reward functions $\{u^0, u^1, \ldots, u^N\}$ and a linear optimal policy $\{\pi^*_1, \pi^*_2, \ldots, \pi^*_N\}$:

$$u^{N-n+1}(s_n) = p_{N-n+1}s_n^2, \quad \pi^*_n(s_n) = \alpha_n s_n$$

where

$$p_0 = 1, \quad p_n = 1 + b^2 - \frac{b^2}{1 + p_{n-1}} \quad 1 \leq n \leq N$$

$$\alpha_n = -\frac{p_{N-n}}{1 + p_{N-n} b} \quad 1 \leq n \leq N.$$

Since each $u^{N-n+1} : (0, \infty) \rightarrow (0, \infty)$ is onto strictly increasing, the inverse DP \mathcal{D}^{-1} is specified by the following components:

$$\text{Opt} = \max, \quad R = S = [0, \infty), \quad B = [0, \infty) \times (-\infty, \infty)$$

$$B_n(r_n) = \{(s_n, a_n) \mid -b s_n \leq a_n, \quad s_n = \sqrt{r_n/p_{N-n+1}}, \quad s_n^2 + a_n^2 \leq r_n\}$$

$$g_n(a_n, s_{n+1}) = (-a_n + s_{n+1})/b, \quad \ell(r_{N+1}) = \sqrt{r_{N+1}}$$

$$U_n(r_n, s_n, a_n) = r_n - (s_n^2 + a_n^2).$$

The inverse DP \mathcal{D}^{-1} is called the \textit{inverse control process}. It represents the problem:

Maximize $-\frac{a_1}{b} - \frac{a_2}{b^2} - \ldots - \frac{a_N}{b^N} + \sqrt{r_{N+1}}$

subject to (i) $r_n - (s_n^2 + a_n^2) = r_{n+1} \quad 1 \leq n \leq N$

(ii) $s_n = \sqrt{r_n/p_{N-n+1}} \quad 1 \leq n \leq N$

(iii) $s_n^2 + a_n^2 \leq r_n, \quad -b s_n \leq a_n \quad 1 \leq n \leq N.$

Then the recursive formula becomes as follows:

$$v^{N-n+1}(r_n) = \max \left[\frac{1}{b}(-a_n + v^{N-n}(r_n - s_n^2 - a_n^2)) \right] \quad r_n \geq 0,$$

$$s_n = \sqrt{r_n/p_{N-n+1}} \quad 1 \leq n \leq N$$

$$s_n^2 + a_n^2 \leq r_n$$

$$-b s_n \leq a_n \quad 1 \leq n \leq N.$$
However, not solving this equation backwards, but applying the INVERSE THEOREM, we have onto strictly increasing optimal reward functions \(v^0, v^1, \ldots, v^N \) and an optimal policy \(\{ \hat{\alpha}_1, \hat{\alpha}_2, \ldots, \hat{\alpha}_N \} \):

\[
v^{N-n+1}(r_n) = (u^{N-n+1})^{-1}(r_n) = \sqrt{r_n / p_{N-n+1}}
\]

Of course these optimal solutions are obtained by solving directly the recursive equation (5.3). The reader will find that solving (5.3) is more difficult than (5.1). Therefore the application of the INVERSE THEOREM is more effective than solving (5.3).

In particular, two-stage main control process \(D \) and its inverse control process \(D^{-1} \) have

\[
u^0(s_3) = s_3^2
\]

\[
u^1(s_2) = (s + \frac{1}{2} b^2) s_2^2
\]

\[
u^2(s_1) = \frac{2 + \frac{3}{2} b^2 + \frac{1}{2} b^4}{2 + \frac{1}{2} b^2} s_1^2
\]

and

\[
v^0(r_3) = \sqrt{r_3}
\]

\[
v^1(r_2) = \frac{1}{\sqrt{1 + \frac{1}{2} b^2}} \sqrt{r_2}
\]

\[
v^2(r_1) = \frac{\sqrt{2 + \frac{1}{2} b^2}}{\sqrt{2 + \frac{3}{2} b^2 + \frac{1}{2} b^4}} \sqrt{r_1}
\]

respectively.

6. Inverse allocation process

Throughout this section let \(0 < a < 1, 0 < b < 1, c_1, c_2, c_3, d > 0 \) and \(N \) be a positive integer. Consider the following typical \(N \)-stage allocation
problem (see [1, p.44]):

\[
\begin{align*}
\text{Maximize} & \quad \sum_{n=1}^{N} [c_1 a_n^d + c_2 (s_n - a_n)^d] + c_3 s_{N+1}^d \\
\text{subject to} & \quad (i) \quad a_n + b(s_n - a_n) = s_{n+1} \quad 1 \leq n \leq N \\
& \quad (ii) \quad 0 \leq a_n \leq s_n \quad 1 \leq n \leq N.
\end{align*}
\]

The economic interpretation is stated in [1, p.4]. This problem is represented by an \(N\)-stage main DP \(D\) whose components are specified as follows:

\[
\begin{align*}
\text{Opt} = \max_{n} S_n^R = A_n^R = [0, \infty) \quad A_n(s_n) = [0, s_n] \\
 f_n(s_n, a_n, r_{n+1}) = c_1 a_n^d + c_2 (s_n - a_n)^d + r_{n+1} \\
k(s_{N+1}) = c_3 s_{N+1}^d, \quad T_n(s_n, a_n) = a_n + b(s_n - a_n).
\end{align*}
\]

We call \(D\) the main allocation process. It is easily shown that the main allocation process \(D\) has onto strictly increasing optimal reward functions \(\{u^0, u^1, \ldots, u^N\}\) and an optimal policy \(\{\pi^*_1, \pi^*_2, \ldots, \pi^*_N\}\):

\[
\begin{align*}
u^N_{N-n+1}(s_n) = p^N_{N-n+1} a_n^d, \quad \pi^*_n(s_n) = \alpha_n s_n
\end{align*}
\]

where

\[
p_0 = c_3
\]

\[p^N_{N-n+1} = \max_{0 \leq x \leq 1} [c_1 x^d + c_2 (1 - x)^d + p^N_{N-n}(ax + b(1 - x))^d] \quad 1 \leq n \leq N\]

and \(\alpha_n\) is the value of \(x\) which attains the maximum of (6.1).

On the other hand, the components of the inverse DP \(D^{-1}\), called the inverse allocation process, become as follows:

\[
\begin{align*}
\text{Opt} = \min_{n} S_n^R = [0, \infty), \quad B_n = [0, \infty) \times [0, \infty) \\
B_n(r_n) = \{(s_n, a_n) | 0 \leq a_n \leq s_n = (r_n/p^N_{N-n+1})^{1/d}, c_1 a_n^d + c_2 (s_n - a_n)^d \leq r_n\} \\
b_n(a_n, s_{n+1}) = -(a_n - b) + s_{n+1}/b, \quad k(r_{N+1}) = (r_{N+1}/c_3)^{1/d} \\
U_n(r_n, a_n) = r_n - c_1 a_n^d - c_2 (s_n - a_n)^d.
\end{align*}
\]

The inverse allocation process \(D^{-1}\) represents the problem:

\[
\begin{align*}
\text{Minimize} & \quad -\frac{a-b}{b} a_1 - \frac{a-b}{b^2} a_2 - \cdots - \frac{a-b}{b^N} a_N + \frac{r_{N+1}}{b} (r_{N+1}/c_3)^{1/d} \\
\text{subject to} & \quad (i) \quad r_n - c_1 a_n^d - c_2 (s_n - a_n)^d = r_{n+1} \quad 1 \leq n \leq N
\end{align*}
\]
The corresponding recursive formula becomes

\[(6.2) \quad v_{N-n+1}(r_n) = \min \left\{ \frac{1}{b}(-a-b)\frac{r_n}{p_{N-n+1}}, \frac{v_{N-n}(r_n - c_1 a_n - c_2 (s_n - a_n)^d)}{r_n} \right\} \quad r_n > 0, \quad 1 \leq n \leq N \]

\[\theta := \begin{cases}
\frac{r_n}{p_{N-n+1}}^{1/d} \\
\frac{c_1 a_n d + c_2 (s_n - a_n)^d}{r_n} \\
0 < a_n < s_n
\end{cases} \]

\[v^0(r_{N+1}) = (r_{N+1}/c_3)^{1/d} \quad r_{N+1} \geq 0.\]

The INVERSE THEOREM gives the inverse allocation process \(D^{-1}\) and the following optimal solutions:

\[v_{N-n+1}(r_n) = (u_{N-n+1})^{-1}(r_n) = \left(\frac{r_n}{p_{N-n+1}}\right)^{1/d} \]

\[\hat{\sigma}_n(r_n) = \pi_n^* (u_{N-n+1})^{-1}(r_n) = \left(\frac{\alpha_n}{(p_{N-n+1})^{1/d}}\right)^{1/d} r_n^{1/d}.\]

Note that the recursive equation (6.2) has the solution

\[v_{N-n+1}(r_n) = q_{N-n+1} r_n^{1/d}, \quad \hat{\sigma}_n(r_n) = \beta_n r_n^{1/d}\]

where

\[q_0 = 1/(c_3^{1/d})\]

\[(6.3) \quad q_{N-n+1} = \min \left\{ -\frac{(a-b)}{b} y + \frac{1}{b^2} q_{N-n} (1-c_1 y - c_2 (\frac{1}{p_{N-n+1}}^{1/d} - y))^{1/d} \right\} \quad 0 \leq y \leq \frac{1}{p_{N-n+1}}^{1/d} \quad 1 \leq n \leq N \]

\[c_1 y + c_2 (\frac{1}{p_{N-n+1}}^{1/d} - y) \leq 1\]

and \(\beta_n\) is the value of \(y\) which attains the minimum of (6.3). Thus we obtain

\[q_{N-n+1} = 1/(p_{N-n+1})^{1/d}, \quad \beta_n = \alpha_n/(p_{N-n+1})^{1/d}.\]

In particular, for the case \(a = 0\) and \(d = 1/2\), we have

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Inverse Control and Inverse Allocation

\[p_0 = c_3 \]

\[p_{N-n+1} = c_1^2 + (c_2 + \sqrt{b}p_{N-n})^2 \quad 1 \leq n \leq N \]

\[a_n = \frac{c_1^2}{c_1^2 + (c_2 + \sqrt{b}p_{N-n})^2} \quad 1 \leq n \leq N \]

and

\[q_0 = \frac{1}{2c_3} \]

\[q_{N-n+1} = \frac{1}{c_1^2 + (c_2 + \sqrt{b}q_{N-n})^2} \quad 1 \leq n \leq N \]

\[\beta_n = \frac{c_1^2}{c_1^2 + (c_2 + \sqrt{b}q_{N-n})^2} \left(\frac{1}{p_{N-n+1}}\right)^2 \quad 1 \leq n \leq N, \]

respectively.

Concluding remarks.

Eliminating the state variables \(s_2, s_3, \ldots, s_{N+1} \), and identifying \(s_1, a_1, a_2, \ldots, a_N \) with \(c, x_1, x_2, \ldots, x_N \) we transform the problem represented by the main control process in §5 into an equivalent constrained mathematical programming problem:

\[\text{Minimize} \quad \left(b^Nc + b^{N-1}x_1 + \ldots + bx_{N-1} + x_N \right)^2 \]

\[+ \left(b^{N-1}c + b^{N-2}x_1 + \ldots + bx_{N-2} + x_{N-1} \right)^2 + x_{N-1}^2 \]

\[+ \left(b^{N-2}c + b^{N-3}x_1 + \ldots + bx_{N-3} + x_{N-2} \right)^2 + x_{N-2}^2 \]

\[\vdots \]

\[+ (bc + x_1)^2 + x_1^2 \]

subject to

(1) \[b^Nc + b^{N-1}x_1 + \ldots + bx_{N-1} + x_N \geq 0 \]

(2) \[b^{N-1}c + b^{N-2}x_1 + \ldots + bx_{N-2} + x_{N-1} \geq 0 \]

\[\vdots \]

\[(N) \quad bc + x_1 \geq 0 \]

\[(N+1) \quad -\infty < x_1 < \infty \quad 1 \leq 1 \leq N \]
where positive constant b is given and parameter c ranges on half line $[0, \infty)$. Thus we have the following one-parametric, quadratic and multi-constrained problem:

$$\begin{align*}
\text{Minimize } & (x, A(c)x) + 2(b(c), x) + d(c) \\
\text{subject to } & (i) \ B(c)x \geq e(c) \\
& (ii) \ x \in \mathbb{R}^N,
\end{align*}$$

where $A(c)$ is positive definite and $B(c)$ is upper-triangular and nonsingular. Note that the original control process without nonnegativity of state variables represents the equivalent unconditional problem without constraint (i). Similarly, the main allocation process in §6 represents an equivalent, one-parametric, and multi-constrained problem. These problems leave us an open problem of developing a general inverse theory for parametric multi-constrained mathematical programming problems.

The inverse theory has generated a counterpart in dynamic programming problem whose solution is obtained through inverse and composition from the solution of the original dynamic programming problem. Furthermore, the theory generates a new class of dynamic programming problems whose solution is not characterized by the solution of the original problem. These problems are obtained from the inverse problem by exchanging the constraints $s_n = (u_{n+1})^{-1}$ for another constraints.

Finally we remark that with appropriate modifications the preceding argument will remain valid for a number of sequential decision processes on the one-dimensional state space.

Acknowledgement

The author would like to express his hearty thanks to anonymous referees whose helpful suggestions and valuable comments have improved the manuscript.

Reference

Inverse Control and Inverse Allocation

Seiichi IWAMOTO: Study of Information and Behavioral Sciences, Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 730, Japan.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.