A POLYNOMIAL-TIME BINARY SEARCH ALGORITHM FOR THE MAXIMUM BALANCED FLOW PROBLEM

Akira Nakayama

Otaru University of Commerce

(Received January 20, 1988; Revised March 20, 1989)

Abstract We consider the maximum balanced flow problem of a two-terminal network \(N \), i.e., a maximum flow problem with an additional constraint described in terms of a balancing rate function \(\alpha : A \to \mathbb{R}^+ - \{0\} \), where \(A \) is the arc set of \(N \) and \(\mathbb{R}^+ \) is the set of nonnegative reals. In this paper, we propose a polynomial time algorithm for the maximum balanced flow problem, on condition that all given functions in \(N \) are rational. The proposed algorithm, which is composed of a binary search algorithm and Dinic's maximum flow algorithm with a parameter, requires \(O(\max\{\log(c^*), m\log(n^*), nm\})T(n, m) \) time, where \(c^* = \max\{c(a) : a \in A\} \) for positive integral arc-capacities \(c(a) : a \in A \) and \(n^* = \max\{n(a) : a \in A\} \) for \(\alpha(a) \equiv \zeta(a)/\eta(a) \leq 1 \) such that \(\zeta(a) \) and \(\eta(a) \) are positive integers, and \(T(n, m) \) is the time for the maximum flow computation for a network with \(n \) vertices and \(m = |A| \) arcs.

1. Introduction

Minoux [10] considered the maximum balanced flow problem, i.e., the problem of finding a maximum flow in a two-terminal network such that each arc flow value of the underlying graph is bounded by a fixed proportion of the total flow value from source \(s \) to sink \(t \). The maximum balanced flow problem is motivated by Minoux's research of reliability analysis of communication networks. If a flow from \(s \) to \(t \) is balanced, then it is guaranteed that the value of the blocked arc flow is at most the fixed proportion of the total flow value from \(s \) to \(t \).

Several algorithms [2,3,10,11,13] are proposed for the maximum balanced flow problem. Cui [2,3] showed a simplex and a dual simplex methods without cycling on the underlying graph \(G \) of two-terminal network. When balancing rate functions are constant, Minoux's algorithm [10] and that of Nakayama [11] are proposed. The former needs \(O(p_{\max}^2S(n, m)) \) time, where \(p_{\max} \) is the maximum number of arc disjoint directed paths from source to sink of \(G \) and \(S(n, m) \) is the complexity of the shortest path problem for a network with \(n \) vertices and \(m \) arcs and with a nonnegative arc length function. The latter takes \(O(\min\{m, [1/\tau]\})T(n, m) \) time, where \(\alpha(a) = r \) \((a \in A) \) for given balancing rate function \(\alpha : A \to \mathbb{R}_+ - \{0\} \) \((\mathbb{R}_+ \) is the set of nonnegative reals.), some real \(r \) and the arc set \(A \) of \(G \), and \(T(n, m) \) is the time for the maximum flow computation for a two-terminal network with \(n \) vertices and \(m \) arcs, and \([1/\tau] \) is the maximum integer less than or equal to \(1/\tau \). For general balancing rate functions, Zimmermann [13] proposed an algorithm with \(O(T(n, m)^2) \) computation time.

On the other hand, Ichimori et al. [7,8] considered the weighted minimax flow problem, and Fujishige et al. [5] pointed out the equivalence of the maximum balanced flow problem and the weighted minimax flow problem. When capacity function \(c : A \to \mathbb{Z}_+ \) and weight function \(w : A \to \mathbb{Z}_+ \) are given for the set \(\mathbb{Z}_+ \) of nonnegative integers, the algorithm [8] takes \(O(T(n, m)P) \) computation time, where
\[P = \log(\max\{c(a)w(a) : a \in A\}). \] The algorithm [7] runs in \(O(T(n,m)^2) \) time for general weight functions, having the same speed as Zimmermann's.

We can see the minimax transportation problem, studied by Ahuja [1], of finding a feasible flow \((x(a) : a = (i,j) \in I \times J) \) from \(I \) to \(J \) such that \(\max\{c(a)x(a) : a = (i,j) \in I \times J\} \) is minimum, where \(I \) is a set of origins, \(J \) is a set of destinations and \(c(a) \) is the cost of unit shipment on each arc \(a = (i,j) \in I \times J \). The minimax transportation problem may be regarded as a special version of the weighted minimax flow problem.

The objective of the present paper is to propose a polynomial time algorithm for the maximum balanced flow problem of a two-terminal network \(N \), on condition that all given functions including \(\alpha : A \to R^+ \) in \(N \) are rational. We put \(\alpha(a) = \zeta(a)/\eta(a) \) for some two positive integers \(\zeta(a) \) and \(\eta(a) \). The total complexity is \(O(\max\{\log c^* + m \log \eta^*, nm\}T(n,m)) \), where \(c^* = \max\{c^o(a) : a \in A\} \) for arc-capacities \(c^o(a) \in Z^+ - \{0\} \) \((a \in A) \), \(\eta^* = \max\{\eta(a) : a \in A\} \). The proposed algorithm, which is composed of a binary search algorithm and Dinic's maximum flow algorithm with a parameter, will be expected to be faster than known algorithms in case that all input data are rational.

2. The Maximum Balanced Flow Problem

Let \(G = (V,A) \) be a directed graph where \(V \) is the vertex set and \(A \) is the arc set of \(G \). For two capacity functions \(c^o : A \to R^+ \) and \(c_o : A \to R^+ \), a balancing rate function \(\alpha : A \to R^+ - \{0\} \) and a function \(\beta : A \to R \), consider a two-terminal network \(N = (G = (V,A),c^o,c_o,\alpha,\beta,s,t) \) where \(R^+ \) is the set of nonnegative reals, \(R \) is the set of reals, \(s \) is the source and \(t \) is the sink of \(G \). The maximum balanced flow problem \((P) \) for network \(N \) is formulated as follows.

\[
(P) : \quad \text{Maximize } f(a^*) \quad \text{subject to} \\
(1) \quad D \cdot f = 0, \\
(2) \quad c_o(a) \leq f(a) \leq c^o(a) \quad (a \in A), \\
(3) \quad f(a) \leq \alpha(a)f(a^*) + \beta(a) \quad (a \in A),
\]

where arc \(a^* = (t,s) \notin A \) is added to \(G \) and \(D \) is the vertex-arc incidence matrix of \(G \). We assume that \(c^o, c_o \) and \(\beta \) are integral, and that \(c^o(a) > \beta(a) \) \((a \in A) \) and \(\alpha(a) \equiv \zeta(a)/\eta(a) \leq 1 \) \((a \in A) \) for some positive integers \(\zeta(a) \) and \(\eta(a) \). Define \(\theta \) by

\[
\theta = \prod \{\eta(a) : a \in A\}. \tag{4}
\]

If the function \(f : A^* \to R^+ \) \((A^* = A \cup \{a^*\}) \) satisfies \((1) \sim (3) \), then \(f \) is called a balanced flow in network \(N \). Let \(f^* \) be the value maximizing \(f(a^*) \) in \(N \), and define the boundary \(\partial f : V \to R \) of a function \(f : A^* \to R^+ \) in \(N \) by

\[
\partial f(v) = \sum\{f((v,i)) : (v,i) \in A^*\} - \sum\{f((i,v)) : (i,v) \in A^*\}, \tag{5}
\]

where \(v \in V \). Associated with problem \((P) \), consider the following two problems \((P^*) \) for network \(N^* = (G = (V,A),c^o,c_o,s,t) \):

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Algorithm for Maximum Balanced Flows

\((P^*)\) : Maximize \(g(a^*)\)
subject to (1) and (2), where \(f\) should be replaced by \(g\),

and \((P(y))\) for network \(N(y) = (G = (V, A), (c^0(a, y) : a \in A), e_0, \beta, s, t)\), where \(y\) is a parameter and \(c^0(a, y) = \min\{c^0(a), \alpha(a)y + \beta(a)\}\):

\((P(y))\) : Maximize \(f(a^*)\)
subject to constraint (1) and
(6) \(e_0(a) \leq f(a) \leq c^0(a, y) (a \in A)\).

Note that \((P(y))\) can be regarded as a maximum flow problem with parameter \(y\) in capacities \((c^0(a, y) : a \in A)\).

Proposition 1. Let \(f^{**}(y)\) be the value maximizing \(f(a^*)\) in network \(N(y)\). If problem \((P)\) is feasible, then we have \(f^* = \max\{y : f^{**}(y) = y\}\).

Define the capacity \(c(A(S))\) of a cut \(A(S) := A^+(S) \cup A^-(S)\) by
\[
c(A(S)) = \sum\{c^0(a) : a \in A^+(S)\} - \sum\{c_0(a) : a \in A^-(S)\},
\]
where for \(S \subset V (s \in S, t \notin S)\), \(A^+(S) = \{(i, j) \in A : i \in S, j \notin S\}\) and \(A^-(S) = \{(i, j) \in A : j \in S, i \notin S\}\). A *minimum cut* is defined to be a cut having the minimum capacity. Then we have:

Theorem 2 [4]. For any network the maximum flow value from the source to the sink is equal to the capacity of a minimum cut.

Let \(A(S, y)\) be a minimum cut in network \(N(y)\) at \(y\), and
\[
K'(S, y) = \{a \in A^+(S, y) : c^0(a) > \alpha(a)y + \beta(a)\} \quad \text{and} \quad K''(S, y) = A^+(S, y) - K'(S, y).
\]
From theorem 2 we have \(f^{**}(y) = U(S, y)y + W(S, y)\), where
\[
U(S, y) = \sum\{\alpha(a) : a \in K'(S, y)\} \quad \text{and} \quad W(S, y) = \sum\{\beta(a) : a \in K'(S, y)\} + \sum\{c^0(a) : a \in K''(S, y)\} - \sum\{c_0(a) : a \in A^-(S)\}.
\]
\(U(S, y)\) is called slope in \(N(y)\) at \(y\). Define \(b^o\) and \(b_o\) by
(7) \(b^o = \max\{(c^0(a) - \beta(a))/\alpha(a) : a \in A\}\),
(8) \(b_o = \max\{\max\{(c^0(a) - \beta(a))/\alpha(a) : a \in A\}, 0\}\).

3. Algorithm for the Maximum Balanced Flow Problem

Consider two functions \(z = f^{**}(y)\) and \(z = y\) in a \((y, z)\)-plane. From proposition 1, if problem \((P)\) is feasible then the optimal value of \((P)\) is the maximum \(y^*\) such that \((y^*, y^*)\) is an intersection point of \(z = f^{**}(y)\) and \(z = y\). The outline of our algorithm is composed of the following two parts 1 and 2, though the detailed description will be shown in subsequent sections:
Part 1: By a binary search algorithm, we find y_o and y^o such that $y_o \leq f^* \leq y^o$ and $y^o - y_o < \gamma$ for some fixed value $\gamma \in \mathbb{R}_+$.

Part 2: We find f^* by Dinic's maximum flow algorithm with parameter y satisfying $y_o \leq y \leq y^o$.

3.1 Algorithm of Part 1

In later discussion, we assume that problem (P^*) is feasible. Let

\[\gamma = \frac{1}{(\theta m^2 (m + n + 1)^{2n^2 - 1})^w} \]

where $m = |A|$, $n = |V|$ and $w = 2mn + n^2 - 2m + n - 2$. Algorithm I of Part 1 is as follows.

Algorithm I:

Step 1: Put $\text{FLAG0} = \text{FLAG1} = 1$. Find the maximum flow value g^* in network N^*. If $g^* \geq b_o$, then we have the optimal value $f^* = g^*$ and stop. Otherwise, put $y_o = g^*$ and $y_o = b_o$.

Step 2: (2.1) If $y^o - y_o < \gamma$, then stop. Otherwise, put $y'' = (y^o + y_o)/2$.

Do $\text{WAIT-A-MINUTE} (y'', y^o, y_o, \text{FLAG0}, N(y))$. If $\text{FLAG0} = 0$ (y_o is renewed.), then go back to (2.1).

(2.2) Do $\text{JUDGE} (y'', y^o, y_o, \text{FLAG1}, N(y))$. If $\text{FLAG1} = 0$, then stop. Otherwise, go back to (2.1).

In algorithm I, WAIT-A-MINUTE ($y'', y^o, y_o, \text{FLAG0}, N(y)$) and JUDGE ($y'', y^o, y_o, \text{FLAG1}, N(y)$) are the following procedures, where two variables FLAG0 and FLAG1 are in $\{0, 1\}$ and $N(y) = (G = (V, A), (c^o(a, y) : a \in A), c_o, s, t)$.

Procedure WAIT-A-MINUTE ($y'', y^o, y_o, \text{FLAG0}, N(y)$):

Calculate the maximum flow value $f^{**} (y)$ of $N(y)$ at $y = y''$. If we have $y'' \leq f^{**} (y'')$ or no flows for $N(y)$, then put $y_o = y''$ and $\text{FLAG0} = 0$.

Otherwise, we put $\text{FLAG0} = 1$.

Procedure JUDGE ($y'', y^o, y_o, \text{FLAG1}, N(y)$):

Find line $z = L(y)$ with slope $U(S, y'')$ for some $S \subset V$ containing point $(y'', f^{**} (y''))$. Then obtain the intersection point (y', z') of $z = L(y)$ and $z = y$.

If $y' > y^o$ or $y' < y_o$, then put $\text{FLAG1} = 0$. Otherwise, renew y^o or y_o as follows:

$y^o = y'$ \hspace{1cm} ($y' \leq y''$),
$y_o = y'$ \hspace{1cm} ($y' > y''$).

FLAG0 shows whether JUDGE ($y'', y^o, y_o, \text{FLAG1}, N(y)$) is carried out or not, while FLAG1 means that if $\text{FLAG1} = 0$, then problem (P) is infeasible.

3.2 Algorithm of Part 2

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Algorithm for Maximum Balanced Flows

Assume that $y^o - y_o < \gamma$ after algorithm I. Before describing algorithm II, change network $N(y)$ into network $N'(y) = (G', A'), (c'(a, y) : a \in A'), s', t')$ as follows.

10. $V' = V \cup \{s', t'\}$, $A' = A^* \cup A^+ \cup A^-,$
11. $A^+ = \{(s', v) : v \in V, \partial c_o(v) < 0\}$, $A^- = \{(v, t') : v \in V, \partial c_o(v) > 0\}$,
12. $c'(a, y) = c^o(a, y) - c_o(a)$ $(a \in A^*)$,
13. $c'((s', v), y) = -\partial c_o(v)$ $((s', v) \in A^+),$
14. $c'(y, t') = \partial c_o(v)$ $((v, t') \in A^-),$

where $c_o(a^*) = c''(a^*, y) = y$, s' is the source and t' is the sink of $N'(y)$. Then we have the following proposition.

Proposition 3 [9]. We have a feasible flow in $N(y)$ satisfying $c_o(a^*) = c^o(a^*, y) = y$ if and only if we have a maximum flow $(f'(a, y) : a \in A')$ from s' to t' in $N'(y)$ such that $f'(a, y) = c'(a, y)$ $(\forall a \in A^+)$. □

Let $q(y)$ and $q'(y)$ be linear functions of y, and $\Gamma = [r, r'] \subset \mathbb{R}$ be a closed interval. If either $q(y) \leq q'(y)$ $(\forall y \in \Gamma)$ or $q(y) \geq q'(y)$ $(\forall y \in \Gamma)$ then $q(y)$ and $q'(y)$ are comparable in Γ. Define ROUTINE $(q(y), q'(y), \Gamma, Y)$ as follows, where Y is a variable.

Procedure ROUTINE $(q(y), q'(y), \Gamma, Y)$:

If $q(y)$ and $q'(y)$ are comparable in Γ, then put $Y = -1$. Otherwise, obtain the solution $Y \in \mathbb{R}$ of equation $q(y) = q'(y)$ $(y \in \Gamma)$.

Now we show algorithm II of Part 2.

Algorithm II:

Step 1: Put $\text{FLAG}_0 = \text{FLAG}_1 = 1$. Calculate a maximum flow for network $N'(y)$ by Dinic's maximum flow algorithm: Construct layered network L of $N'(y)$ and find a maximal flow of L.

(1.1) Renew L and denote new layered network by L again. If we attain a maximum flow $(f'(a, y) : a \in A')$, then go to Step 2. Otherwise, find a maximal flow of L:

(1.1.1) Find a flow-augmenting path $Q(y)$ of L and choose two arc-capacities $q(y)$ and $q'(y)$ of $Q(y)$. (Note that $q(y)$ and $q'(y)$ are linear functions of y.)

(1.1.2) Do ROUTINE $(q(y), q'(y), [y_o, y^o], Y)$. If $Y = -1$, then go to (1.1.3). Otherwise, do WAIT-A-MINUTE $(Y, y^o, y_o, \text{FLAG}_0, N(y))$.

If $\text{FLAG}_0 = 0$, then go to (1.1.3). Otherwise, do JUDGE $(Y, y^o, y_o, \text{FLAG}_1, N(y))$. If $\text{FLAG}_1 = 0$, then stop.

(1.1.3) If we calculated the minimum arc capacity of $Q(y)$, do the flow
augmentation of \(Q(y) \). Otherwise, find other two arc-capacities \(q(y) \) and \(q'(y) \) of \(Q(y) \) and go to (1.1.2). If we have a maximal flow of \(L \), then go to (1.1) of Step 1. Otherwise, go to (1.1.1).

Step 2: If we attain a maximum flow \((f'(a, y) : a \in A') \) such that \(f'(a, y) = c'(a, y) \) for all \(a \in A^+ \), then we have the optimal value \(f^* = \max \{ y : y \in [y_o, y^\circ] \} \) and stop. Otherwise, \((P) \) is infeasible.

4. The Validity and Complexity

The following proposition is easy to see:

PROPOSITION 4. If problem \((P) \) is feasible and we have not found the optimal value \(f^* \) after algorithm I, then we have \(y_o \leq f^* \leq y^\circ \). □

The residual network \(N''(y) = (G'' = (V'', A''), (e''(a, y) : a \in A''), s', t') \) with respect to a flow \((f(a, y) : a \in A') \) in network \(N'(y) \) is defined as

\[
\begin{align*}
V'' &= V', \quad A'' = A'_1 \cup A'_2, \\
e''(a, y) &= e'(a, y) - f(a, y) \quad (a \in A'_1), \\
e''(a^-, y) &= f(a, y) \quad (a^- \in A'_2),
\end{align*}
\]

where \(A'_1 = \{ a \in A' : f(a, y) < c'(a, y) \} \) and \(A'_2 = \{ a^- : a^- \) is the reversed arc of \(a \in A' \) with \(f(a, y) > 0 \}. \)

Let \(N''_i(y) = (G''_i = (V''_i, A''_i), (e''_i(a, y) : a \in A''_i), s', t') \) be \(i \)-th residual network as to a maximal flow \((f_{i-1}(a, y) : a \in A''_{i-1}) \) of \(N''_{i-1}(y) \), where \(N''_1(y) = N'(y) \). Let \(L''_i(y) \) be the layered network of \(N''_i(y) \), and \(Q(y) \) be a flow augmenting path of \(L''_i(y) \). The flow augmentation of \(Q(y) \) is called path-flow augmentation of \(L''_i(y) \).

PROPOSITION 5. Let \(n(i) \) be the number of path-flow augmentations of \(L''_i(y) \). Then we have \(n(i) \leq m' - i + 1 \) for \(m' = \lvert A' \rvert \).

(Proof) Let \(\Xi_i \) be a set of the paths joining \(s' \) and \(t' \) of \(L''_i(y) \). We see that each path in \(\Xi_i \) has the same length, say, \(p(i) \). Then we have

\[
p(i) + n(i) - 1 \leq \lvert A(L''_i(y)) \rvert \leq m',
\]

where \(A(L''_i(y)) \) is the arc set of \(L''_i(y) \). From \(i \leq p(i) \), we have \(n(i) \leq m' - i + 1 \). □

PROPOSITION 6. Let \((f, j(a, y) : a \in A(L''_i(y))) \) be a flow of \(L''_i(y) \) obtained after \(j \) path-flow augmentations of \(L''_i(y) \). Then we have:

\[
\begin{align*}
f, j(a, y) &= \sum \{ \kappa^a(e) e''(e, y) : e \in A(L''_i(y)) \} \quad (\kappa^a(e) \in Z, \ a \in A(L''_i(y))), \\
\max \{ \lvert \kappa^a(e) \rvert : e \in A(L''_i(y)) \} &\leq 2^{j-1}. \\
\end{align*}
\]

If \(f, j(a, y) < c''(a, y) \), then we have \(\kappa^a_e(0) = 0 \ (e \in A(L''_i(y))) \), where \(Z \) is the set of integers, \(Z_+ \) is the set of nonnegative integers and
$c''_i(e,y) \in \mathbb{Z}_+ - \{0\}$ is the capacity of arc e in $N''_i(y)$.

(Proof) We can prove (18) and (19) by induction on j. We note here that if $f_i(a,y) = c''_i(a,y)$ for some $a \in A(L''_i(y))$ and some $k \leq j$, then we have:

$f_i(a,y) = c''_i(a,y) \quad (k \leq d \leq j)$. □

Proposition 7. Let $(c''_1(a,y) : a \in A''_1)$ be capacity of the i-th residual network $N''_i(y)$, where $i \geq 2$. Then we have:

$$c''_i(a,y) = \sum \{ \psi^a_{e}(e,y) : e \in A' \} \quad (\psi^a_{e}(e) \in \mathbb{Z}, \; a \in A''_i),$$

$$\max \{| \psi^a_{e}(e) | : e \in A' \} \leq (m' + 1)^{i-2} 2^{u(i)},$$

where $u(i) = (i - 1)(2m' - i)/2$ and $m' = |A'|$.

(Proof) We use induction on i. From proposition 6, we have (20) and (21) for $i = 2$. Suppose that we carried out J path-flow augmentations to find a maximal flow $(f_i, f_i(e,y) : e \in A(L''_i(y)))$ of $L''_i(y)$. From proposition 6 we have

$$f_i(a,y) = \sum \{ \kappa^a_{e}(e) c''_1(e,y) : e \in A(L''_1(y)) \} \quad (\kappa^a_{e}(e) \in \mathbb{Z}).$$

Then we have $$\max \{| \kappa^a_{e}(e) | : e \in A(L''_i(y)) - \tilde{F}_2 \} \leq 2^{i-1} \quad (a \in A(L''_i(y))).$$

From (22) ~ (24), inductive assumption, $|A(L''_i(y))| \leq m'$ and $J \leq m' - i + 1$, we have (20) and (21) replacing i by $i + 1$. Note that

$$1 + m'(m' + 1)^{i-2} 2^{u(i+1)} \leq (m' + 1)^{i-1} 2^{u(i+1)}. \quad \Box$$

Proposition 8. Let $\rho(i) = (m' + 1)^{i-2} 2^{u(i)}$ in (21). Then we have:

$$\rho(i) \leq \rho(n - 1) = (m + n + 1)^{n-3} 2^{n-1} \quad (2 \leq i \leq n - 1),$$

where $v = (n - 2)(2m + n + 1)/2$.

(Proof) Let p be the length of the shortest directed path from s' to t' of network $N''(y)$. From $p \geq 3, i \leq |V'|-1, |V'| = n + 2, m' \leq m + n$ and proposition 7, we have (25). □
PROPOSITION 9. If \(Y \neq -1 \) in \(\text{WAIT-A-MINUTE}(Y, y^o, y_o, \text{FLAG}0, N(y)) \), then we have \(Y = \tau \theta / \chi \) for some \(\chi \in \{ z \in \mathbb{Z}_+ : 0 < z \leq \theta m^{2^m+n} \rho(n-1) \} \) and some \(\tau \in \mathbb{Z}_+ \).

(Proof) Consider \(i \)-th layered network \(L''_i(y) \). Assume that we are going to do \(J \)-th path-flow augmentation. From (10) \sim (14) and proposition 7 we see that the solution \(Y \) is obtained from linear equation of \(Y \) such that

\[
\sum \{ \kappa_i^1(e) \alpha(e) : e \in A \} y + \tau_1 = \sum \{ \kappa_i^2(e) \alpha(e) : e \in A \} y + \tau_2,
\]

where \(\kappa_i^d(e) \in \mathbb{Z}_+ \), \(\kappa_i^d(e) \leq \rho(i)2^i \) and \(\tau_d \in \mathbb{Z} \) for \(d = 1, 2 \). From (4) we have

\[
\kappa'(a) \in \mathbb{Z}_+ - \{0\} \quad (a \in A) \text{ such that } \alpha(a) = \kappa'(a)/\theta \leq 1. \text{ Let}
\]

\[
\chi = \sum \{ \kappa_i^1(e) \kappa'(e) : e \in A \} - \sum \{ \kappa_i^2(e) \kappa'(e) : e \in A \}.
\]

Assuming \(\tau_2 = \tau_1 \geq 0 \) we have \(Y = \tau_2 \theta / \chi \). From (27), propositions 5 and 8 and \(\kappa'(e) \leq \theta \) (\(e \in A \)), we have \(\chi \leq \theta m^{2^m+n} \rho(n-1) \). \(\Box \)

PROPOSITION 10. \(\text{WAIT-A-MINUTE}(Y, y^o, y_o, \text{FLAG}0, N(y)) \) is carried out at most once for \(Y \neq -1 \).

(Proof) Assume that \(\text{WAIT-A-MINUTE}(Y, y^o, y_o, \text{FLAG}0, N(y)) \) is carried out twice for \(Y = y_1 \) and \(y_2 \), where \(y_1 \neq y_2 \), \(y_1 \neq -1 \) and \(y_2 \neq -1 \). From proposition 9, we have

\[
y_i = \tau_i \theta / \chi_i \quad (\tau_i \in \mathbb{Z}_+, \chi_i \in \{ z \in \mathbb{Z}_+ : 0 < z \leq \theta m^{2^m+n} \rho(n-1) \})
\]

where \(i = 1, 2 \). From (9) and proposition 8, we have

\[
|y_1 - y_2| \geq \frac{\theta}{(\theta m^{2^m+n} \rho(n-1))^2} = \gamma.
\]

From \(|y_1 - y_2| \leq y^o - y_o < \gamma \) and (29), we have a contradiction. \(\Box \)

Concerning the total complexity of algorithms \(I \) and \(II \), we have:

PROPOSITION 11. The total computational complexity of algorithms \(I \) and \(II \) is

\[
O(\max\{ \log c^*, m \log \eta^*, nm \} T(n, m)),
\]

where \(c^* = \max\{ c^o(a) : a \in A \} \), \(\eta^* = \max\{ \eta(a) : a \in A \} \) and \(T(n, m) \) is the time for the maximum flow computation for a two-terminal network with \(n \) vertices and \(m \) arcs.

(Proof) Consider algorithm \(I \). We have \(O(T(n, m)) \) time for each step 2. Let \(k \) be the number of repetitions of Step 2. From \(g^*/2^k < \gamma \) algorithm \(I \) takes

\[
O(\max\{ \log g^*, \log \theta, mn \} T(n, m)) \text{ time, where } g^* \text{ is the maximum flow value of network } N^*.
\]

From proposition 10 and [6] algorithm \(II \) requires \(O(n^2 m + T(n, m)) \) time. From \(g^* \leq mc^* \) and \(\theta \leq (\eta^*)^m \), we have this proposition. \(\Box \)

Now we show an example of our algorithm:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
EXAMPLE: Consider network \(N = (G = (V, A), c^o, c^a, \alpha, \beta, s, t) \) with \(a^* = (t, s) \) in Fig.1, where \(a^* \not\in A \), \(V = \{s, 1, 2, t\} \) and \(A = \{a_i : 1 \leq i \leq 5\} \). The ordered triple attached to each \(a \in A \) is \((c^o(a), c^a(a), \alpha(a)y + \beta(a))\). We have \(b^o = 0, b^a = 20, \gamma = 12, \theta = 24 \) and \(\gamma = 1/(24 \times 25 \times 100 \times 2^{48}) \). In Fig.2 we have \(z = y \) and \(z = f^{**}(y) \). After Step 1 of algorithm I we have \(y^o = 12 \) and \(y^o = 0 \). Going to Step 2 we calculate value \(f^{**}(y) \) of network \(N(y) \) for \(y = (12 + 0)/2 = 6 \). From \(f^{**}(6) = 17/2 > 6 \), we put \(y^o = 6 \) and go to (2.1). Repeating Step 2, we finally have \(y^o = 9 + 1/3 \) and \(y^o = 9 + \xi \) \((\xi = (1 - 1/2^{63})/3)\).

![Fig.1](image1.png) ![Fig.2](image2.png)

We have network \(N'(y) \) in Fig.3 and the layered networks \(L''_1(y) \) in Figs. 4-6, where the linear function of \(y \) beside each arc in each figure is the arc-capacity. From \(1 \leq y - 3 \) \((y \in [9 + \xi, 28/3])\), we have \(L''_2(y) \) in Fig.5. Solving \(1 - y/12 = 2y/3 - 6 \) in Fig.6, we have the optimal value \(f^* = 28/3 \).

![Fig.3](image3.png)
Acknowledgements

The author wishes to thank referees for pointing out a few errors in the earlier draft of this paper. He also thanks Professor Satoru Fujishige of University of Tsukuba for giving valuable suggestions on this paper.

References

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Algorithm for Maximum Balanced Flows

Akira NAKAYAMA : Department of Management Sciences, Faculty of Commerce, Otaru University of Commerce, Otaru, Hokkaido, 047, Japan

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.