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Abstract We consider the ranking problem of learning a ranking function from the data set of objects
each of which is endowed with an attribute vector and a ranking label chosen from the ordered set of labels.
We propose two different formulations: primal problem, primal problem with dual representation of normal
vector, and then propose to apply the kernel technique to the latter formulation. We also propose algorithms
based on the row and column generation in order to mitigate the computational burden due to the large
number of objects.
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1. Introduction

This paper is concerned with a multi-class classification problem of n objects, each of which
is endowed with an m-dimensional attribute vector xi = (xi

1, x
i
2, . . . , x

i
m)

⊤ ∈ Rm and a label
ℓi. The underlying statistical model assumes that object i receives label k, i.e., ℓi = k, when
the latent variable yi determined by

yi = w⊤xi + εi =
m∑
j=1

wjx
i
j + εi

falls between two thresholds pk and pk+1, where εi represents a random noise whose prob-
abilistic property is not known. Namely, attribute vectors of objects are loosely separated
by hyperplanes H(w, pk) = {x ∈ Rm | w⊤x = pk } for k = 1, 2, . . . , l which share a
common normal vector w, then each object is given a label according to the layer it is
located in. Note that neither yi’s, wj’s nor pk’s are observable. Our problem is to find the
normal vector w ∈ Rm as well as the thresholds p1, p2, . . . , pl that best fit the input data
{ (xi, ℓi) | i = 1, 2, . . . , n }.

This problem is known as the ranking problem and frequently arises in social sciences and
operations research. See, for instance Crammer and Singer [2], Herbrich et al. [3], Liu [4],
Shashua and Levin [6] and Chapter 8 of Shawe-Taylor and Cristianini [7]. It is a variation
of the multi-class classification problem, for which several learning algorithms of the support
vector machine (SVM for short) have been proposed. We refer the reader to Chapters 4.1.2
and 7.1.3 of Bishop [1], Chapter 10.10 of Vapnik [9] and Tatsumi et al. [8] and references
therein. What distinguishes the problem from other multi-class classification problems is
that the identical normal vector should be shared by all the separating hyperplanes. In this
paper based on the formulation fixed margin strategy by Shashua and Levin [6], we propose
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a row and column generation algorithm to maximize the minimum margin for the ranking
problems.

This paper is organized as follows. We give some definitions and notation in Section
2. In Section 3, we formulate the maximization of minimum margin with the hard margin
constraints and apply the dual representation of the normal vector to the formulation. In
Section 4, we propose a row and column generation algorithm and prove the validity of the
algorithm. In Section 5, after reviewing the kernel technique, we apply the kernel technique
to the hard margin problem with the dual representation. In Section 6, 7 and 8, we broaden
the discussions so far to the soft margin problem. After giving a small illustrative example
in Section 9, we report the computational experiments of our algorithm in Section 10. In
appendix, we discuss the monotonicity of the separating curves.

2. Definitions and Notation

Throughout the paper N = {1, 2, . . . , i, . . . , n} denotes the set of n objects and xi =
(xi

1, x
i
2, . . . , x

i
m)

⊤ ∈ Rm denotes the attribute vector of object i. The predetermined set
of labels is L = {0, 1, . . . , k, . . . , l} and the label assigned to object i is denoted by ℓi. Let
N(k) = { i ∈ N | ℓi = k } be the set of objects with label k ∈ L, and for notational conve-
nience we write n(k) = |N(k)| for k ∈ L, and N(k..k′) = N(k) ∪N(k + 1) ∪ · · · ∪N(k′) for
k, k′ ∈ L such that k < k′. For succinct notation we define

X =

 · · · xi · · ·


i∈N

∈ Rm×n (2.1)

XW =

 · · · xi · · ·


i∈W

∈ Rm×|W | (2.2)

for W ⊆ N , and the corresponding Gram matrices

K = X⊤X ∈ Rn×n, (2.3)

KW = X⊤
WXW ∈ R|W |×|W |. (2.4)

We denote the k-dimensional zero vector and the k-dimensional vector of 1’s by 0k and
1k, respectively. Given a subset W ⊆ N and a vector α = (αi)i∈W we use the notation
(αW ,0N\W ) to denote the n-dimensional vector ᾱ such that

ᾱi =

{
αi when i ∈ W

0 otherwise.

3. Hard Margin Problems for Separable Case

3.1. Primal hard margin problem

Henceforth we assume that N(k) ̸= ∅ for all k ∈ L for the sake of simplicity, and adopt the
notational convention that p0 = −∞ and pl+1 = +∞. We say that an instance { (xi, ℓi) |
i ∈ N } is separable if there exist w ∈ Rm and p = (p1, p2, . . . , pl)

⊤ ∈ Rl such that

pℓi < w⊤xi < pℓi+1 for i ∈ N .
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Clearly an instance is separable if and only if there are w and p such that

pℓi + 1 ≤ w⊤xi ≤ pℓi+1 − 1 for i ∈ N.

For each k ∈ L \ {0} we see that

max
i∈N(k−1)

w⊤xi ≤ pk − 1 < pk < pk + 1 ≤ min
j∈N(k)

w⊤xj,

implying

min
j∈N(k)

w⊤

∥w∥
xj − max

i∈N(k−1)

w⊤

∥w∥
xi ≥ 2

∥w∥
.

Then the margin between {xi | i ∈ N(k − 1) } and {xj | j ∈ N(k) } is at least 2/∥w∥ for
k = 2, . . . , l. Hence the maximization of the minimum margin is formulated as the quadratic
programming

(H)

∣∣∣∣∣ minimize ∥w∥2

subject to pℓi + 1 ≤ (xi)⊤w ≤ pℓi+1 − 1 for i ∈ N,

or more explicitly with the notation introduced in Section 2

(H)

∣∣∣∣∣∣∣
minimize ∥w∥2

subject to 1− (xi)⊤w + pℓi ≤ 0 for i ∈ N(1..l)
1 + (xi)⊤w − pℓi+1 ≤ 0 for i ∈ N(0..l − 1).

The constraints therein are called the hard margin constraints, and we name this problem
(H).

3.2. Dual representation

A close look at the primal problem (H) shows that the following property holds for an
optimum solution w∗. See, for example Chapter 6 of Bishop [1], Shashua and Levin [6] and
Theorem1 in Schölkopf et al. [5].
Lemma 3.1. Let (w∗,p∗) ∈ Rm+l be an optimum solution of (H). Then w∗ ∈ Rm lies in
the range space of X, i.e., w∗ = Xλ for some λ ∈ Rn.

Proof. Let w1 be the orthogonal projection of w∗ onto the range space of X and let w2 =
w∗ −w1. Then we obtain

(xi)⊤w∗ = (xi)⊤(w1 +w2) = (xi)⊤w1 for i ∈ N,

meaning that (w1,p
∗) is feasible to (H), and

∥w∗∥2 = ∥w1∥2 + ∥w2∥2 ≥ ∥w1∥2.

Hence by the optimality of w∗ we conclude that w2 = 0.

The representation w = Xλ is called the dual representation of the normal vector.
Substituting Xλ for w yields another formulation of the primal hard margin problem (H̄):

(H̄)

∣∣∣∣∣ minimize λ⊤Kλ

subject to pℓi + 1 ≤ (ki)⊤λ ≤ pℓi+1 − 1 for i ∈ N,
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where (ki)⊤ = ((xi)⊤x1, (xi)⊤x2, . . . , (xi)⊤xn) is the ith row of the matrix K. Since n is
typically by far larger than m, problem (H̄) might be less interesting than problem (H).
However the fact that this formulation only requires the matrix K will enable an application
of the kernel technique to the problem.

4. Algorithms for Hard Margin Problems

We start with proposing an algorithm for problem (H) arising from separable instances.
Note that the separability makes (H) feasible. The problem has m + l of variables and by
far larger n of constraints. It is very likely that a small fraction of constraints is binding
at an optimum solution of the problem, i.e., a small number of support vectors is expected.
Introducing a subset W , called the working set, of N and omitting the constraints for i not
in W , we consider the relaxed problem:

(H(W ))

∣∣∣∣∣ minimize ∥w∥2

subject to pℓi + 1 ≤ (xi)⊤w ≤ pℓi+1 − 1 for i ∈ W.

If an optimum solution of problem (H(W )) satisfies all the constraints for i ∈ N \W , it
is obviously an optimum solution of (H). Therefore the following row generation algorithm
will solve problem (H) when it terminates.

AlgorithmRH (Row Generation Algorithm for (H))

Step 1 : Let W 0 be an initial working set and let ν = 0.

Step 2 : Solve (H(W ν)) to obtain wν and pν .

Step 3 : Let ∆ = { i ∈ N \W ν | (wν ,pν) violates pℓi + 1 ≤ (xi)⊤w ≤ pℓi+1 − 1 }.
Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν∪∆ν , increment ν by 1 and go to Step 2.

Next we consider the primal hard margin problem (H̄) with the dual representation of
the normal vector. Since the dimension m of the attribute vector is much smaller than the
number n of objects, it is very likely that a small number of λi’s are positive in the dual
representation w = Xλ. Then we propose to start the algorithm with a small number of
attribute vectors as W and then increment it as the computation goes on. The sub-problem
to solve is

(H̄(W ))

∣∣∣∣∣ minimize λ⊤
WKWλW

subject to pℓi + 1 ≤ (ki
W )⊤λW ≤ pℓi+1 − 1 for i ∈ W,

where (ki
W )⊤ is the row vector consisting (xi)⊤xj for j ∈ W . Note that the dimension of

λW varies when the size of W changes as the computation goes on.

AlgorithmRCH̄ (Row and Column Generation Algorithm for (H̄))

Step 1 : Let W 0 be an initial working set, and let ν = 0.

Step 2 : Solve (H̄(W ν)) to obtain λW ν and pν .

Step 3 : Let ∆ = { i ∈ N \W ν | (λW ν ,pν) violates pℓi + 1 ≤ (ki
W ν )⊤λW ≤ pℓi+1 − 1 }.

Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν∪∆ν , increment ν by 1 and go to Step 2.

The following lemma shows that AlgorithmRCH̄ solves problem (H̄) upon termination.
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Lemma 4.1. Let (λ̂W , p̂) ∈ R|W |+l be an optimum solution of (H̄(W )). If

p̂ℓi + 1 ≤ (ki
W )⊤λ̂W ≤ p̂ℓi+1 − 1 for all i ∈ N \W , (4.1)

then (λ̂W ,0N\W ) ∈ Rn together with p̂ forms an optimum solution of (H̄).

Proof. Note that ((λ̂W ,0N\W ), p̂) is a feasible solution of (H̄) since (ki)⊤
(

λ̂W

0N\W

)
=

(ki
W )⊤λ̂W , (λ̂W , p̂) is feasible to (H̄(W )) and satisfies (4.1).
For an optimum solution (λ∗,p∗) of (H̄) let w∗ = Xλ∗, w1 be its orthogonal projection

onto the range space of XW and w2 = w∗ −w1. Then w1 = XWµ∗
W for some µ∗

W ∈ R|W |

and
(λ∗)⊤Kλ∗ = ∥w∗∥2 ≥ ∥w1∥2 = (µ∗

W )⊤KWµ∗
W (4.2)

by the orthogonality between w1 and w2. For i ∈ N ∩W it holds that

(ki
W )⊤µ∗

W = (xi)⊤XWµ∗
W = (xi)⊤w1 = (xi)⊤(w1 +w2)

= (xi)⊤w∗ = (xi)⊤Xλ∗ = (ki)⊤λ∗,

which is between p∗ℓi + 1 and p∗ℓi+1 − 1 since (λ∗,p∗) is feasible to (H̄). Then (µ∗
W ,p∗) is

feasible to (H̄(W )). This and the optimality of λ̂W yield the inequality

(µ∗
W )⊤KWµ∗

W ≥ λ̂
⊤
WKW λ̂W =

(
λ̂W

0N\W

)⊤

K

(
λ̂W

0N\W

)
. (4.3)

The two inequalities (4.2) and (4.3) prove the optimality of ((λ̂W ,0N\W ), p̂).

Theorem 4.1. The AlgorithmRCH̄ solves problem (H̄).

5. Kernel Technique for Hard Margin Problems

The matrix K in the primal hard margin problem (H̄) with the dual representation of the
normal vector is composed of the inner products (xi)⊤xj for i, j ∈ N . This enables us
to apply the kernel technique simply by replacing them by κ(xi,xj) for some appropriate
kernel function κ.

Let ϕ : Rm → F be a function, possibly unknown, from Rm to some higher dimensional
inner product space F, so-called the feature space such that

κ(x,y) = ⟨ϕ(x), ϕ(y)⟩

holds for x,y ∈ Rm, where ⟨·, ·⟩ is the inner product defined on F. In the sequel we denote
x̃ = ϕ(x). The kernel technique considers the vectors x̃i ∈ F instead of xi ∈ Rm, and finds
a normal vector w̃ ∈ F and thresholds p1, . . . , pl. Therefore the matrices X and K should
be replaced by X̃ composed of vectors x̃i and K̃ =

[
⟨x̃i, x̃j⟩

]
i,j∈N , respectively. Note that

the latter matrix is given as

K̃ =

κ(xi,xj)


i,j∈N

(5.1)

by the kernel function κ. Denote the ith row of the matrix K̃ by (k̃
i
)⊤, then the problem

to solve is
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(H̃)

∣∣∣∣∣ minimize λ⊤K̃λ

subject to pℓi + 1 ≤ (k̃
i
)⊤λ ≤ pℓi+1 − 1 for i ∈ N.

Solving (H̃) to find λ∗, an optimal normal vector w̃∗ ∈ F would be given as

w̃∗ =
∑
i∈N

λ∗
i x̃

i,

which is not available in general due to the absence of an explicit representation of x̃i’s.
However, the value of ⟨w̃∗, x̃⟩ can be computed for the attribute vector x ∈ Rn of a newly-
arrived object in the following way:

⟨w̃∗, x̃⟩ = ⟨
∑
i∈N

λ∗
i x̃

i, x̃⟩ =
∑
i∈N

λ∗
i ⟨x̃i, x̃⟩ =

∑
i∈N

λ∗
i ⟨ϕ(xi), ϕ(x)⟩ =

∑
i∈N

λ∗
iκ(x

i,x).

Then by locating the threshold interval determined by p∗ into which this value falls, we can
assign a label to the new object.

In the same way as for the hard margin problem (H̄) we consider the sub-problem

(H̃(W ))

∣∣∣∣∣ minimize λ⊤
W K̃WλW

subject to pℓi + 1 ≤ (k̃
i

W )⊤λW ≤ pℓi+1 − 1 for i ∈ W,

where K̃W is the sub-matrix consisting of the rows and columns of K̃ with indices in W ,

and (k̃
i

W )⊤ is the row vector of κ(xi,xj) for j ∈ W .

AlgorithmRCH̃ (Row and Column Generation Algorithm for (H̃))

Step 1 : Let W 0 be an initial working set, and let ν = 0.

Step 2 : Solve (H̃(W ν)) to obtain λW ν and pν .

Step 3 : Let ∆ = { i ∈ N \W ν | (λW ν ,pν) violates pℓi + 1 ≤ (k̃
i

W ν )⊤λW ≤ pℓi+1 − 1 }.
Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν∪∆ν , increment ν by 1 and go to Step 2.

The validity of the algorithm is straightforward from the following lemma, which is
proved in exactly the same way as Lemma4.1

Lemma 5.1. Let (λ̂W , p̂) ∈ R|W |+l be an optimum solution of (H̃(W )). If

p̂ℓi + 1 ≤ (k̃
i

W )⊤λ̂W ≤ p̂ℓi+1 − 1 for all i ∈ N \W ,

then (λ̂W ,0N\W ) ∈ Rn together with p̂ forms an optimum solution of (H̃).

Theorem 5.1. The AlgorithmRCH̃ solves problem (H̃).

6. Soft Margin Problems for Non-Separable Case

6.1. Primal soft margin problem

Similarly to the binary SVM, introducing nonnegative slack variables ξ−i and ξ+i for i ∈ N
relaxes the hard margin constraints to the soft margin constraints:

pℓi + 1− ξ−i ≤ w⊤xi ≤ pℓi+1 − 1 + ξ+i for i ∈ N.
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400 Y. Izunaga, K. Sato, K. Tatsumi & Y. Yamamoto

Positive values of variables ξ−i and ξ+i mean misclassification, hence they should be as small
as possible. If we penalize positive ξ−i and ξ+i by adding

∑
i∈N(ξ−i + ξ+i) to the objective

function, we have the following primal soft margin problem.

(S)

∣∣∣∣∣∣∣
minimize ∥w∥2 + c1⊤

n (ξ− + ξ+)

subject to pℓi + 1− ξ−i ≤ (xi)⊤w ≤ pℓi+1 − 1 + ξ+i for i ∈ N
ξ−, ξ+ ≥ 0n,

where ξ− = (ξ−1, . . . , ξ−n), ξ+ = (ξ+1, . . . , ξ+n) and c is a penalty parameter.
Naturally, we could add the constraints

pk′ + 1− ξ−i ≤ (xi)⊤w ≤ pk′′ − 1 + ξ+i for k′, k′′ ∈ L such that k′ ≤ ℓi < k′′ for i ∈ N

to the above formulation. It would, however, inflate the problem size and most of those
constraints would be likely redundant. Therefore we will not discuss this formulation.

6.2. Dual representation

Obviously we can replace ∥w∥2 and (xi)⊤w in the primal problem given in the preceding
subsection by λ⊤Kλ and (ki)⊤λ, respectively to obtain the primal problem with the dual
representation of the normal vector. Then we obtain

(S̄)

∣∣∣∣∣∣∣
minimize λ⊤Kλ+ c1⊤

n (ξ− + ξ+)

subject to pℓi + 1− ξ−i ≤ (ki)⊤λ ≤ pℓi+1 − 1 + ξ+i for i ∈ N
ξ−, ξ+ ≥ 0n.

7. Algorithms for Soft Margin Problems

The algorithms for the soft margin problems may not differ substantially from those for the
hard margin problems. The relaxed problem (S(W )) of (S) for the working set W ⊆ N is

(S(W ))

∣∣∣∣∣∣∣
minimize ∥w∥2 + c1⊤

|W |(ξ−W + ξ+W )

subject to pℓi + 1− ξ−i ≤ (xi)⊤w ≤ pℓi+1 − 1 + ξ+i for i ∈ W
ξ−W , ξ+W ≥ 0|W |,

where ξ−W = (ξ−i)i∈W and ξ+W = (ξ+i)i∈W .

Lemma 7.1. If an optimum solution (ŵ, p̂, ξ̂−W , ξ̂+W ) of problem (S(W )) satisfies the
constraints

p̂ℓi + 1 ≤ (xi)⊤ŵ ≤ p̂ℓi+1 − 1 for all i ∈ N \W ,

then (ŵ, p̂, (ξ̂−W ,0N\W ), (ξ̂+W ,0N\W )) is an optimum solution of (S).

Proof. Clearly (ŵ, p̂, ξ̂−, ξ̂+) = (ŵ, p̂, (ξ̂−W ,0N\W ), (ξ̂+W ,0N\W )) is a feasible solution of
(S). To show its optimality, we suppose that there is another feasible solution (w,p, ξ−, ξ+)
of (S) such that

∥ŵ∥2 + c1⊤
n (ξ̂− + ξ̂+) > ∥w∥2 + c1⊤

n (ξ− + ξ+).

Since ξ̂−N\W = ξ̂+N\W = 0N\W and ξ−N\W , ξ+N\W ≥ 0N\W we obtain the inequality

∥ŵ∥2 + c1⊤
|W |(ξ̂−W + ξ̂+W ) > ∥w∥2 + c1⊤

|W |(ξ−W + ξ+W ).
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This contradicts the optimality of (ŵ, p̂, ξ̂−W , ξ̂+W ) since (w,p, ξ−W , ξ+W ) is feasible to
(S(W )).

Therefore the following algorithm will solve problem (S) when it terminates.

AlgorithmRS (Row Generation Algorithm for (S))

Step 1 : Let W 0 be an initial working set and let ν = 0.

Step 2 : Solve (S(W ν)) to obtain (wν ,pν , ξ−W ν , ξ+W ν ).

Step 3 : Let ∆ = { i ∈ N \W ν | (wν ,pν) violates pℓi + 1 ≤ (xi)⊤w ≤ pℓi+1 − 1 }.
Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν∪∆ν , increment ν by 1 and go to Step 2.

Next we consider the primal soft margin problem (S̄) with the dual representation of
the normal vector. The sub-problem to solve is

(S̄(W ))

∣∣∣∣∣∣∣
minimize λ⊤

WKWλW + c1⊤
|W |(ξ−W + ξ+W )

subject to pℓi + 1− ξ−i ≤ (ki
W )⊤λW ≤ pℓi+1 − 1 + ξ+i for i ∈ W

ξ−W , ξ+W ≥ 0|W |.

AlgorithmRCS̄ (Row and Column Generation Algorithm for (S̄))

Step 1 : Let W 0 be an initial working set, and let ν = 0.

Step 2 : Solve (S̄(W ν)) to obtain (λW ν ,pν , ξ−W ν , ξ+W ν ).

Step 3 : Let ∆ = { i ∈ N \W ν | (λW ν ,pν) violates pℓi + 1 ≤ (ki
W ν )⊤λW ≤ pℓi+1 − 1 }.

Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν∪∆ν , increment ν by 1 and go to Step 2.

Lemma 7.2. Let (λ̂W , p̂, ξ̂−W , ξ̂+W ) be an optimum solution of (S̄(W )). If

p̂ℓi + 1 ≤ (ki
W )⊤λ̂W ≤ p̂ℓi+1 − 1 for all i ∈ N \W ,

then ((λ̂W ,0N\W ), p̂, (ξν−W ,0N\W ), (ξν+W ,0N\W )) is an optimum solution of (S̄).

Proof. First note that ((λ̂W ,0N\W ), p̂, (ξ̂−W ,0N\W ), (ξ̂+W ,0N\W )) is feasible to (S̄). Let
(λ∗,p∗, ξ∗−W , ξ∗+W ) be an optimum solution of (S̄), let w∗ = Xλ∗ and w1 be its orthogonal
projection onto the range space of XW . Then we see that the coefficient vector µ∗

W such
that w1 = XWµ∗

W together with (p∗, ξ∗−W , ξ∗+W ) forms a feasible solution of (S̄(W )), and
∥w∗∥ ≥ ∥w1∥. Therefore in the same manner as Lemma4.1, we obtain the desired result.

The validity of the algorithm directly follows the above lemma.

Theorem 7.1. The AlgorithmRCS̄ solves problem (S̄).

8. Kernel Technique for Soft Margin Problems

The kernel technique can apply to the soft margin problem in the same way as discussed in
Section 5.

For the kernel version of soft margin problems with the dual representation of the normal
vector, we have only to replace K by K̃ given by some kernel function κ. Then the kernel
version of (S̄) is given as
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402 Y. Izunaga, K. Sato, K. Tatsumi & Y. Yamamoto

(S̃)

∣∣∣∣∣∣∣
minimize λ⊤K̃λ+ c1⊤

n (ξ− + ξ+)

subject to pℓi + 1− ξ−i ≤ (k̃
i
)⊤λ ≤ pℓi+1 − 1 + ξ+i for i ∈ N

ξ−, ξ+ ≥ 0n.

In the same way as in the previous section we consider the sub-problem of (S̃), which is
given as

(S̃(W ))

∣∣∣∣∣∣∣
minimize λ⊤

W K̃WλW + c1⊤
|W |(ξ−W + ξ+W )

subject to pℓi + 1− ξ−i ≤ (k̃
i

W )⊤λW ≤ pℓi+1 − 1 + ξ+i for i ∈ W
ξ−W , ξ+W ≥ 0|W |.

AlgorithmRCS̃ (Row and Column Generation Algorithm for (S̃))
Step 1 : Let W 0 be an initial working set, and let ν = 0.

Step 2 : Solve (S̃(W ν)) to obtain (λW ν ,pν , ξ−W ν , ξ+W ν ).

Step 3 : Let ∆ = { i ∈ N \W ν | (λW ν ,pν) violates pℓi + 1 ≤ (k̃
i

W ν )⊤λW ≤ pℓi+1 − 1 }.
Step 4 : If ∆ = ∅, terminate.

Step 5 : Otherwise choose ∆ν ⊆ ∆, let W ν+1 = W ν∪∆ν , increment ν by 1 and go to Step 2.

We then obtain the following theorem.
Theorem 8.1. The AlgorithmRCS̃ solves problem (S̃).

9. Illustrative Example

We show with a small instance how different models result in different classifications. The
instance is the grades in calculus of 44 undergraduates. Each student is given one of the
four possible grades A,B,C and D according to his/her total score of mid-term exam, end-
of-term exam and a number of in-class quizzes. We take the scores of student’s mid-term
and end-of-term exams to form the attribute vector, and his/her grade as the label.

Since the score of quizzes is not considered as an attribute, the instance is not separable,
hence the hard margin problem (H) is infeasible. The solution of the soft margin problem (S)
with c = 15 is given in Figure 1, where the students of different grades are loosely separated
by three straight lines. Each value on the lines in the figure represents the corresponding
threshold pk.

Using the following two kernel functions defined as

κ(x,y) = exp

(
− 1

2σ2
∥x− y∥2

)
(Gaussian kernel),

κ(x,y) = (1 + x
⊤
y)d (Polynomial kernel)

with several different values of σ and d, we solved (S̃). The result of the Gaussian kernel
with c = 10 and σ = 0.5 is given in Figure 2, where one can observe that the problem (S̃)
with the Gaussian kernel is exposed to the risk of over-fitting. This issue will be discussed
in Appendix. The result of the polynomial kernel with c = 15 and d = 4 is given in Figure 3.
From Fig. 3, we observe that the students of different grades are separated by three gentle
curves.
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Figure 1: Classification by (S)
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Figure 2: Classification by (S̃) with the Gaussian kernel
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Figure 3: Classification by (S̃) with the polynomial kernel

10. Computational Experiments

We report on the computational experiments with our proposed algorithms. Implement-
ing the algorithms in Python 2.7, using Gurobi 6.0.0 as a QP solver, we performed the
experiments on a PC with Intel Core i7, 3.70 GHz processor and 32.0 GB of memory.

The instances we tested were randomly generated and fall into two types: separable
instances and non-separable instances. First, we generate n attribute vectors xi = (xi

1, x
i
2)

of two dimension, each component of which is drawn uniformly from the unit interval [0, 1].
Then object i is assigned the label ℓi defined as

ℓi = max
ℓ∈L

{ ℓ ∈ L | xi
1 + xi

2 > pℓ }

for the fixed thresholds (p0, p1, p2, p3) = (−∞, 0.5, 1.0, 1.5). The instances thus generated
are of the first type, i.e., separable. Non-separable instances are generated by altering the
labels of objects. Namely, adding a random noise to each element of the attribute vector
to make a perturbed attribute vector (xi

1 + εi1, x
i
2 + εi2), where εi1 and εi2 follow the normal

distribution with a zero mean and a standard deviation of 0.03, we give the label ℓi to object
i according to the sum xi

1 + εi1 + xi
2 + εi2 instead of xi

1 + xi
2. Due to the presence of the

random noise, the instances thus generated are not necessarily separable.
We generate five datasets for each instance with several different number of objects since

the results may change owing to the random variables used in the instance generation. We
name the separable type dataset (resp., the non-separable dataset) “S.n.q” (resp., “NS.n.q”),
where n is the number of objects and q is the dataset ID.

We solved the separable instances by the algorithm RCH̃ and the non-separable instances
by RCS̃ with c = 10. In all experiments we used the polynomial kernel with d = 4. To make
the initial working set W 0, we collect three objects for each label that have the highest,
the lowest and the median values of xi

1 + xi
2 among the objects assigned the same label.

At Step 5 in the algorithms, we add to the current working set W ν at most two objects
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corresponding to the most violated constraints at (λW ν ,pν), more precisely, we add the
objects i and j ∈ N \W ν such that

i = argmax
{
1− (k̃

i

W ν )
⊤
λW ν + pνℓi > 0 | i ∈ N \W ν

}
,

j = argmax
{
1 + (k̃

i

W ν )
⊤
λW ν − pνℓi+1 > 0 | i ∈ N \W ν

}
.

Table 1 shows the computational results of applying RCH̃ (resp., RCS̃) to separable
instances (resp., non-separable instances), where the columns “# iter.”, “# added obj.”
and “time” represent the number of sub-problems solved, the number of added objects
and the computation time in seconds, respectively. In order to assess the efficiency of our
algorithm, we added the column “GRB” showing the computation time when the whole
problems (H̃) and (S̃) were directly input and solved by Gurobi, and the column “PRank”
showing the computation time of applying PRank algorithm [2], which is an on-line learning
algorithm motivated by the perceptron. The entries “ave.” and “st.dev.” show the average
and the standard deviation across the five datasets.

We begin by looking at the results for the separable instances. From Table 1, we ob-
serve that the number of added objects is much smaller than that of the original problem.
Specifically, only from 0.4% to 8.6% of the whole set of variables of the problems suffices
in order to obtain an optimal solution. Thus RCH̃ requires a small memory capacity, and
it helps RCH̃ be applicable to further larger instances. Gurobi Optimizer for solving (H̃)
requires a rather long computation time as the instance size grows. To be specific, Gurobi
takes over 10,000 seconds, approximately 2.8 hours, on average to solve the instances with
n = 10,000, while our algorithm takes less than 300 seconds on average. Concerning PRank
algorithm, it also requires a long computation time for large instances since the algorithm
needs to compute and store an n-dimensional row vector of K̃ at every iteration. From
these observations, RCH̃ is superior to applying Gurobi and PRank directly to the whole
problem in terms of both computation time and memory consumption.

Turning now to the results for the non-separable instances, we observe that the number
of iterations as well as the number of added objects is larger than that for the separable
instances. Nevertheless the number of added objects is approximately 20% of the whole set
of variables, that is, RCS̃ also requires a small memory capacity. In contrast, RCS̃ takes
much longer computation time than applying Gurobi and PRank directly to the whole
problem. This drawback is due to the way of our implementation. Whenever a working
set W is updated in our algorithm, we generate a sub-problem corresponding to W by
adding not only constraints but also variables as well. The vast majority of computation
time was spent for Gurobi to carry out sub-problem generation repeatedly every time when
the working set was updated. Take “NS.1000.5” for instance, we give a breakdown of the
computation time at each iteration in Figure 4. The legends in the figure are as follows:
“GenTime” is the time of generating a sub-problem, “RunTime” is the time of solving
a sub-problem, and “FeasTime” is the time required for searching violated constraints at
Step 3. We observe that the predominant portion of the computation time was devoted to
the problem generation and the run time and feasibility checking time together are fringe.
This suggests that a finely tuned application of a QP solver could dramatically reduce the
total computation time. This would merit further research.

Next, we compare our algorithms with PRank algorithm with respect to the accuracy of
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Figure 4: Breakdown of the computation time for “NS.1000.5”

solutions. We use the following average rank loss as a measure of accuracy:

1

n

∑
i∈N

|ℓ̂i − ℓi|,

where ℓ̂i is a label predicted from the solution (λ∗,p∗) obtained by the algorithms. Namely,
ℓ̂i = maxℓ∈L{ ℓ ∈ L |

∑
j∈N λ∗

jκ(x
i,xj) > p∗ℓ }. Since a positive value of the average rank

loss indicates misclassification, it is preferable to be close to zero. Table 2 summarizing
the average rank losses of our algorithms and PRank algorithm shows that our algorithms
outperform PRank algorithm in all instances. As a matter of course, we confirm that the
average rank losses obtained by our algorithm are zero for the separable instances.

11. Conclusions

In this paper, we proposed to apply the dual representation of the normal vector to the
formulation based on the fixed margin strategy by Shashua and Levin [6] for the ranking
problem. The problem obtained has the drawback that it has n of variables as well as n
of constraints. However the fact that it enables an application of the kernel technique out-
weighs the drawback. Then we proposed a row and column generation algorithm. Namely,
we start the algorithm with a sub-problem which is much smaller than the master problem
in both variables and constraints, and increment both of them as the computation goes on.
Furthermore we proved the validity of the algorithm. Through some preliminary experi-
ments, our algorithm performed fairly well. However it should need further research such as
the setting of the initial working set W 0 and the choice of ∆ν since a clever choice of these
may enhance the efficiency of the algorithm.
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Appendix A. Monotonicity Issue

In some situations it would be desirable that the separating curves have some monotonicity
property, namely an object with attribute vector x be ranked higher than an object with y
such that y ≤ x.

Let P be a hyperplane in F defined by

P = { x̃ ∈ F | ⟨w̃∗, x̃⟩ = b }

for some constant b ∈ R and let C denote its inverse image under the unknown function ϕ,
i.e.,

C = {x ∈ Rm | ϕ(x) ∈ P }.

Then x ∈ C if and only if ⟨w̃∗, ϕ(x)⟩ = b. Since w̃∗ =
∑

i∈N λ∗
i x̃

i =
∑

i∈N λ∗
iϕ(x

i), we
obtain

⟨
∑
i∈N

λ∗
iϕ(x

i), ϕ(x)⟩ = b.

Due to the bi-linearity of the inner product ⟨·, ·⟩, we have

⟨
∑
i∈N

λ∗
iϕ(x

i), ϕ(x)⟩ =
∑
i∈N

λ∗
i ⟨ϕ(xi), ϕ(x)⟩ =

∑
i∈N

λ∗
iκ(x

i,x),

and then an expression of the inverse image

C = {x ∈ Rm |
∑
i∈N

λ∗
iκ(x

i,x) = b }

by the kernel function κ.
Suppose that the kernel function κ(xi, ·) is nondecreasing for i ∈ N , in the sense that

x ≤ x′ ⇒ κ(xi,x) ≤ κ(xi,x′),

and λ∗
i ≥ 0 for i ∈ N . Then

∑
i∈N λ∗

iκ(x
i,x) is nondecreasing as a whole.

Lemma A.1. The kernel function κ(xi, ·) is nondecreasing and λ∗
i ≥ 0 for i ∈ N . Then

the contours are nondecreasing.

The polynomial kernel

κ(xi,x) = (1 + (xi)⊤x)d

is nondecreasing with respect to x if xi ≥ 0 for i ∈ N . Therefore it would be appropriate
to use the polynomial kernel when all the attribute vectors are nonnegative including those
of potential objects, and the monotonicity is desirable. In this case the kernel hard margin
problem (H̃) should be added non-negativity constraints of variables λi’s:

(H̃+)

∣∣∣∣∣∣
minimize λ⊤K̃λ

subject to pℓi + 1 ≤ (k̃
i
)⊤λ ≤ pℓi+1 − 1 for i ∈ N

λ ≥ 0.

The problem remains an ordinary convex quadratic optimization, and the additional
non-negativity constraints do not make it more difficult to solve.
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