EQUILIBRIUM, AUCTION,
AND GENERALIZED GROSS SUBSTITUTES AND COMPLEMENTS

Akiyoshi Shioura
Tokyo Institute of Technology

Zaifu Yang
University of York

(Received June 12, 2015; Revised August 31, 2015)

Abstract We study a market model where there are many different types of indivisible goods for sale. The goods can be substitutable or complementary. There are multiple units of each good. Each agent may consume several goods and has quasi-linear utilities in money. A general condition is introduced to guarantee the existence of a Walrasian equilibrium and generalize gross substitutes, strong substitutes, and gross substitutes and complements conditions. Several characterizations of this new condition are identified. A price adjustment process is proposed which converges globally to a Walrasian equilibrium.

Keywords: Discrete optimization, auction, indivisibility, equilibrium, substitutes and complements

1. Introduction

Auctions are fundamental market mechanisms for efficiently allocating goods and services. The purpose of the current paper is to propose a dynamic auction for selling multiple indivisible goods to finitely many bidders. Goods can be substitutes or complements. There may be several units of each good. To devise an auction mechanism, we first have to identify a suitable condition under which a Walrasian equilibrium exists. Then we establish fundamental characterizations of this condition which will be conducive to our dynamic design. The literature on dynamic auction design for selling multiple items starts with a seminal article of Kelso and Crawford [24]. They examine a general labor market where each firm may hire several workers and each worker works for at most one firm. They prove through a salary adjustment process that the market has a nonempty (strict) core and thus possesses a Walrasian equilibrium, as long as every firm views all workers as substitutes. This condition is called the gross substitutes (GS) condition and has become a benchmark condition in auction design, matching, and equilibrium literature; see [32, 42].

Gul and Stacchetti [19] study economies with indivisible goods and introduce two new conditions labeled as single improvement condition and no complementarities condition both being equivalent to the GS condition. Gul and Stacchetti [20] propose an ascending auction that leads to the smallest Walrasian equilibrium prices in economies with indivisible goods that satisfy the GS condition. For similar economies, Milgrom [31] develops a different ascending auction that converges to approximate equilibrium prices of any desired degree of accuracy, and has used this auction in the sale of US spectrum licenses. Ausubel [4] has devised an ingenious strategy-proof dynamic auction under the GS environment*. In Gul and Stacchetti’s auction design and Ausubel’s, the single improvement condition proves to

*He also proposes a strategy-proof dynamic auction for economies with perfectly divisible goods in which every bidder’s value function is increasing and concave.
be a very handy and useful property. Sun and Yang [46] generalize the GS condition to the gross substitutes and complements (GSC) condition and show that there exists a Walrasian equilibrium in economies with indivisible goods. The GSC condition states that if all the indivisible goods can be split into two groups and to every agent goods in the same group are substitutable but complementary to those in the other group. Sun and Yang [48] propose a dynamic auction for economies with indivisible goods under the GSC condition.

The auctions cited above and the one to be introduced in the current paper all use linear and anonymous pricing rules. A related strand of the literature concerns auctions that apply to more general environments but have to use discriminatory and nonlinear pricing rules; see, e.g., [5, 10, 12, 14, 29]. In [50], an anonymous and nonlinear pricing rule is used. Another strand of the literature concerns auction design in the environment where bidders have interdependent values and the goods are multiple but homogeneous; see [2, 40].

In this paper extending the model of Sun and Yang [46], we study a general economy in which a seller wishes to sell two classes S_1 and S_2 of indivisible goods to finitely many bidders. Each class contains several different types of goods. There are multiple units of each type. Units of the same type are perfectly substitutable, and goods of different types in the same class are heterogeneous but still substitutable, whereas goods across two classes are complementary. We call this condition the generalized gross substitutes and complements (GGSC) condition, which will be shown to guarantee the existence of a Walrasian equilibrium in the economy. This condition is specified on the demand correspondence of every bidder.

The GGSC condition becomes the GSC condition of Sun and Yang [46] if each type of good has only one unit. When there is only one class of indivisible goods, i.e., either $S_1 = \emptyset$ or $S_2 = \emptyset$, the GGSC condition becomes identical to the strong substitute valuation of Milgrom and Strulovici [33] and is similar to the M2-GS condition of Murota and Tamura [38]. Further, if each type of good has only one unit, it becomes the GS condition of Kelso and Crawford [24].

Bikhchandani and Mamer [7] and Ma [27, 28] provide necessary and sufficient conditions to the existence problem. In contrast to the GS condition, the GSC condition, and our current conditions, which are imposed upon each individual, their conditions are imposed upon the aggregated behavior of all individuals in the economy. Based on the tropical geometry, Baldwin and Klemperer [6] offer a necessary and sufficient criterion on the conditions for a regular economy that, when imposed upon each individual, guarantee competitive equilibrium. See also [9, 17, 18, 38].

We identify three fundamental characterizations of the GGSC condition. First, we show that a value function satisfies the GGSC condition if and only if it is a GM-concave function. GM-concave function is due to Sun and Yang [47] and generalizes M3-concave function of Murota and Shioura [35]. Our second characterization gives a totally different property on each bidder’s demand correspondence which will play an important role in our auction design. This condition extends the generalized single improvement (GSI) property of Sun and Yang [48] and is called the extended generalized single improvement (EGSI) condition. The GSI condition is a generalization of the single improvement condition of Gul and Stacchetti [19]. Our proof makes use of several results from Murota and Tamura [38] and Murota [34]. Our third characterization theorem extending a theorem of Ausubel and Mil-
grom [5] establishes that a value function is a GM-concave function if and only if its indirect utility function is a generalized variant of L^2-convex function by Murota and Shioura [36, 37]. Related to our EGSI condition, Baldwin and Klemperer [6] generalize the single improvement condition and the GSI condition to the notion of complete D-improvement. We also develop an auction for the current market model which extends the auction of Sun and Yang [48]. We show that starting from any initial price vector, the auction always converges globally to a Walrasian equilibrium. This auction works as follows. The auctioneer announces a vector of current prices, every bidder reports his demand set at these prices, and the auctioneer adjusts prices of goods in one class upwards but those of goods in the other class downwards. We call it a generalized double-track auction. Furthermore, we examine the structure of Walrasian equilibrium price vectors and demonstrate that it exhibits an elegant geometry called L^2-convexity being a refinement of lattice.

We close this introductory section by briefly discussing several other related papers. Hatfield et al. [21] examine a trading network which allows cycles and extends Ostrovsky [39]. They show the existence of equilibrium under a variant of GSC condition in the sense that every agent in the network has quasi-linear utilities and views his upstream (downstream) contracts as substitutes but upstream and downstream contracts together as complements. They also investigate the relation between equilibrium and notion of stability and the structure of equilibrium prices. Drexl [13] studies a similar model. Baldwin and Klemperer [6, Section 6], Sun and Yang [49], and Teytelboym [51, Chapter 3], [52] independently study a related but different trading network also permitting cycles and demonstrate the existence of equilibrium provided that the network does not contain any odd cycle and every agent’s demand for his directly associated goods satisfies the GSC condition.

The rest of the paper proceeds as follows. Section 2 introduces the auction model and the GGSC condition. Section 3 presents three characterizations of the GGSC condition. Section 4 establishes several results concerning Walrasian equilibria and their structure. Section 5 deals with the auction process and its convergence. Some of the proofs are given in Section 6.

2. The Model

The following piece of notation is used throughout the paper. For any integer $k = 1, 2, \ldots, n$, the k-th unit vector is denoted by $\chi_k \in \{0, 1\}^N$. Let $\mathbf{0} = \chi_0 \in \mathbb{Z}^N$ be the vector of 0’s. We also denote by $\mathbf{1} \in \mathbb{Z}^N$ the vector of 1’s. For any subset A of N, let A^c denote its complement, i.e., $A^c = N \setminus A$. For any set $D \subseteq \mathbb{R}^N$, $\text{conv}(D)$ denotes its convex hull.

Consider an auction model where a seller wishes to sell n different kinds of indivisible commodities to a finite group B of bidders with $|B| \geq 2$. Let $N = \{1, 2, \ldots, n\}$ denote the family of n types, and $\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in \mathbb{Z}_+^N$ the bundle of goods for sale, where $\omega_h > 0$ stands for the available units of type $h \in N$. The types can be divided into two classes S_1 and S_2 (i.e., $N = S_1 \cup S_2$ and $S_1 \cap S_2 = \emptyset$). For instance, one can think of S_1 as $|S_1|$ different kinds of tables and of S_2 as $|S_2|$ different kinds of chairs. Items of the same kind are identical and thus perfectly substitutes. Let $\Omega = \{x \in \mathbb{Z}_+^N \mid x \leq \omega\}$ represent the space of all possible bundles for exchange. Every bidder i has a value or utility function $u^i : \Omega \to \mathbb{R}$ specifying his valuation $u^i(z)$ (in units of money) on each bundle z with $u^i(\mathbf{0}) = 0$. We assume that every bidder can pay up to his value and has quasi-linear utilities in money, and that the seller values every bundle at zero.

A price vector $p = (p_1, \ldots, p_n) \in \mathbb{R}^N$ indicates the price for a unit of each good. Given

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
a price vector \(p \in \mathbb{R}^N \), we define every bidder \(i \)'s demand correspondence (or demand set) \(D(u^i, p) \), and the indirect utility function \(V^i(p) \), respectively as
\[
D(u^i, p) = \arg\max_{z \in \Omega} \{ u^i(z) - p^\top z \}, \\
V^i(u^i, p) = \max_{z \in \Omega} \{ u^i(z) - p^\top z \}.
\]

When bidder \(i \)'s value function is represented by \(u^i \), for convenience we may simply use \(D^i(p) \) and \(V^i(p) \) to denote \(D(u^i, p) \) and \(V^i(u^i, p) \), respectively, by ignoring \(u^i \). It is known that for any value function \(u^i : \Omega \to \mathbb{R} \), the indirect utility function \(V^i \) is a decreasing (non-increasing) and polyhedral convex function (see, e.g., \([41] \)). Note that a function \(g : \mathbb{R}^N \to \mathbb{R} \) is said to be polyhedral convex if its epigraph \(\{(p, \alpha) \in \mathbb{R}^N \times \mathbb{R} \mid g(p) < \alpha \} \) is a polyhedron.

An allocation is a distribution \((z^i \mid i \in B) \) of the goods \(\omega \) among all bidders in \(B \), i.e., \(\sum_{i \in B} z^i = \omega \) and \(z^i \in \Omega \) for all \(i \in B \). Note that \(z^i = \emptyset \) is allowed. At the allocation, bidder \(i \) receives bundle \(z^i \). An allocation \((z^i \mid i \in B) \) is said to be efficient if \(\sum_{i \in B} u^i(z^i) = \sum_{i \in B} u^i(y^i) \) for every allocation \((y^i \mid i \in B) \). Given an efficient allocation \((z^i \mid i \in B) \), let \(R(\omega) = \sum_{i \in B} u^i(z^i) \). We call \(R(\omega) \) the market value of the goods.

Definition 2.1. A Walrasian equilibrium \((p, (z^i \mid i \in B)) \) consists of a price vector \(p \in \mathbb{R}^N \) and an allocation \((z^i \mid i \in B) \) such that \(z^i \in D^i(p) \) for every \(i \in B \).

It is well known that every equilibrium allocation is efficient, but an equilibrium may not always exist. In order to ensure the existence of an equilibrium, we need to impose the generalized gross substitutes and complements (GGSC) condition. We say that a set \(C \subseteq \mathbb{Z}^N \) is discrete convex\(^1\) if it contains all integer vectors in its convex hull, i.e., \(C = \text{conv}(C) \cap \mathbb{Z}^N \).

Definition 2.2. The value function \(u^i \) of bidder \(i \) satisfies the generalized gross substitutes and complements (GGSC) condition if
(i) for any price vector \(p \in \mathbb{R}^N \), \(D^i(p) \) is a discrete convex set; and
(ii) for any price vector \(p \in \mathbb{R}^N \), any type \(k \in S_j \) for \(j = 1 \) or \(2 \), any \(\delta > 0 \), and any \(y \in D^i(p) \), there exists \(z \in D^i(p + \delta \chi_k) \) such that
\[
\sum_{h \in S_j} z_h = y_h \quad (\forall h \in S_j \setminus \{k\}), \quad z_h \leq y_h \quad (\forall h \in S_j) \cup S_j^c, \\
\sum_{h \in S_j} z_h - \sum_{h \in S_j^c} z_h \leq \sum_{h \in S_j} y_h - \sum_{h \in S_j^c} y_h.
\]

The GGSC condition states that bidder \(i \)'s value function exhibits the concavity property, and the bidder views goods of each type in each set \(S_j \) as substitutes, but goods across the two sets \(S_1 \) and \(S_2 \) as complements, in the sense that if the bidder demands a bundle \(y \) at prices \(p \) and if now the price of goods of some type \(k \in S_j \) is increased, then he would not decrease his demand on goods of each type in \(S_j \) except type \(k \), and would not increase his demand on goods of each type in the other group \(S_j^c \), and the difference of demand across two groups at current prices should not exceed that at the previous prices. In the case of \(\omega = (1, \ldots, 1) \), which corresponds to a set value function \(u^i : 2^N \to \mathbb{R} \), the GGSC condition reduces to the gross substitutes and complements (GSC) condition of Sun and Yang \([46, 48] \).

Observe that condition (i) will be automatically satisfied when \(\omega = (1, \ldots, 1) \). In particular, when either \(S_1 = \emptyset \) or \(S_2 = \emptyset \), the GGSC condition reduces to the strong substitutes condition of Milgrom and Strulovici \([33] \) and is essentially equivalent to the \(M^c \)-GS condition of Murota and Tamura \([38] \). Furthermore, for the set function \(u^i \), when either \(S_1 = \emptyset \) or

\(^1\)This property is also called hole-free in \([34] \).

\(^2\)The definition of the \(M^c \)-GS condition in \([38] \) does not require \(D^i(p) \) to be discrete convex. Instead \(u^i \) needs to be concave-extensible, which is less natural from a viewpoint of economics. See \([38, \text{Theorem 18(b)]} \).
The GS condition has been studied extensively in the literature; see, e.g., [4, 8, 19, 20, 24, 31].

3. Value Functions and Demand Correspondences

In this section we give three major characterizations of GGSC condition in terms of value functions, demand correspondences, and indirect utility functions.

Before presenting two classes of value functions, we first introduce several notations. Let U be the $n \times n$ matrix whose i-th column is given by $\chi_i, i \in S_1$ and $-\chi_i, i \in S_2$. That is, if $S_1 = \{1, 2, \ldots, n'\}$ and $S_2 = \{n' + 1, n' + 2, \ldots, n\}$, then U is the diagonal matrix given as

$$U = \begin{bmatrix}
1 & & O \\
& \ddots & \\
& & 1 \\
O & & -1 \\
& & \ddots \\
& & & -1
\end{bmatrix}.$$

Given $x \in \mathbb{R}^n$, define

$$\text{supp}^+(x) = \{ k \in N \mid x_k > 0 \}, \quad \text{supp}^-(x) = \{ k \in N \mid x_k < 0 \}.$$

We also define

$$\text{supp}^+_g(x) = \text{supp}^+(Ux) = \{ k \in S_1 \mid x_k > 0 \} \cup \{ k \in S_2 \mid x_k < 0 \},$$

$$\text{supp}^-_g(x) = \text{supp}^-(Ux) = \{ k \in S_1 \mid x_k < 0 \} \cup \{ k \in S_2 \mid x_k > 0 \}.$$

A (finite) integer interval is a set of integral vectors given as

$$\Gamma = \{ x \in \mathbb{Z}^n \mid a_i \leq x_i \leq b_i \ (\forall i = 1, 2, \ldots, n) \},$$

where $a_i, b_i \in \mathbb{Z}$ for each $i = 1, 2, \ldots, n$. Note that $\Gamma = \Omega$ holds if $a_i = 0$ and $b_i = \omega_i$, and $\Gamma = \{0, 1\}^N$ if $a_i = 0$ and $b_i = 1$.

Definition 3.1. A value function $u : \Gamma \to \mathbb{R}$ defined on a finite integer interval Γ is GM-concave (or generalized M^2-concave) if, for every $x, y \in \Gamma$ and $k \in \text{supp}^+_g(x - y)$, there exists some $l \in \text{supp}^-_g(x - y) \cup \{0\}$ such that

$$u(x) + u(y) \leq u(x - U(\chi_k - \chi_l)) + u(y + U(\chi_k - \chi_l)).$$

The class of GM-concave functions is introduced by Sun and Yang [47], where they consider functions defined on more general domains, including integer intervals. GM-concave function is referred to as twisted M^2-concave function in Ikebe and Tamura [22]. Sun and Yang [46] deal with GM-concave functions defined on a special domain of $\{0, 1\}^N$. GM-concave functions given in Definition 3.1 generalize the class of M^2-concave functions by Murota and Shioura [35].

Definition 3.2. A value function $u : \Gamma \to \mathbb{R}$ defined on a finite integer interval Γ is M^2-concave if, for every $x, y \in \Gamma$ and $k \in \text{supp}^+(x - y)$, there exists some $l \in \text{supp}^-(x - y) \cup \{0\}$ such that

$$u(x) + u(y) \leq u(x - (\chi_k - \chi_l)) + u(y + (\chi_k - \chi_l)).$$
Clearly, if \(S_1 = N \) and \(S_2 = \emptyset \), then the concept of GM-concave function coincides with that of M\(^2\)-concave function. The concept of M\(^2\)-concave function is originally defined on more general domains, other than finite integer intervals; see [35] for details.

The following theorem gives the first major characterization of the GGSC condition. Observe that the GGSC condition characterizes a bidder’s demand set while the GM-concavity of a function describes a bidder’s valuation on every bundle. We note that the GGSC condition can be naturally extended to value functions defined on general finite integer intervals, although the original definition considers value functions only on \(\Omega \).

Theorem 3.3. A value function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \) satisfies the GGSC condition if and only if it is GM-concave.

Proof. Proof is given in Section 6.1. \(\square \)

This result reveals an intimate relationship between two totally distinct objects: demand sets and value functions, generalizing a result of Fujishige and Yang [18] which shows that any value function \(u : \{0, 1\}^N \to \mathbb{R} \) satisfies the GS condition if and only if it is M\(^2\)-concave.

The following condition gives another characterization of a bidder’s demand behavior.

Definition 3.4. A value function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \) satisfies the extended generalized single improvement (EGSI) condition if for any \(p, q \in \mathbb{R}^N \) and \(x, y \in \Gamma \) with \(u(y) - p^\top y > u(x) - p^\top x \), there exists \(z \in \Gamma \) such that \(u(z) - p^\top z > u(x) - p^\top x \) and \(z \) satisfies one of the following conditions:

(i) \(z = x - \chi_k + \chi_l \) for some \(k \in \text{supp}^+(x - y) \cup \{0\} \) and \(l \in \text{supp}^-(x - y) \cup \{0\} \) so that if \(k \neq 0 \) and \(l \neq 0 \), then \(k, l \in S_1 \) or \(k, l \in S_2 \);

(ii) \(z = x - \chi_k - \chi_l \) for some \(k, l \in \text{supp}^+(x - y) \) with \(k \in S_1 \) and \(l \in S_2 \);

(iii) \(z = x + \chi_k + \chi_l \) for some \(k, l \in \text{supp}^-(x - y) \) with \(k \in S_1 \) and \(l \in S_2 \).

The bundle \(z \) in the definition is called an EGSI improvement of bundle \(x \).

The EGSI condition says that every suboptimal bundle \(x \) of a bidder at prices \(p \) can be strictly improved by either adding a unit of some good to \(x \), or removing one unit of some good from \(x \), or adding one unit of some good in one set \(S_j \) and simultaneously removing one unit of another good also in the same set \(S_j \). The bundle \(x \) can be also strictly improved by adding simultaneously one unit of some good from each set \(S_j \) to it, or removing simultaneously one unit of some good from each set \(S_j, \ j = 1, 2 \).

When \(\Gamma = \{0, 1\}^N \), the EGSI condition reduces to the generalized single improvement property of Sun and Yang [48]. Furthermore, if either \(S_1 \) or \(S_2 \) is empty, the EGSI condition coincides with the single improvement condition of Gul and Stacchetti [19] which in turn is equivalent to the GS condition. The EGSI condition plays an important role in our adjustment process design as the single improvement condition does in Ausubel [4] and Gul and Stacchetti [20].

The following theorem shows that the GGSC and EGSI conditions are equivalent, although they appear dramatically different from each other. Proof is given in Section 6.2.

Theorem 3.5. A value function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \) satisfies the GGSC condition if and only if it satisfies the EGSI condition.

Before presenting the third characterization of the GGSC condition, we need to introduce several additional concepts. Let \(p, q \in \mathbb{R}^N \) be any vectors. The standard meet and join are defined, respectively, by

\[
\begin{align*}
 p \land q &= (\min\{p_1, q_1\}, \min\{p_2, q_2\}, \ldots, \min\{p_n, q_n\}), \\
 p \lor q &= (\max\{p_1, q_1\}, \max\{p_2, q_2\}, \ldots, \max\{p_n, q_n\}).
\end{align*}
\]

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
We also define the generalized meet $s = (s_1, \ldots, s_n) = p \land_x q$ and generalized join $t = (t_1, \ldots, t_n) = p \lor_x q$ by

\[
\begin{align*}
s_k &= \min\{p_k, q_k\} \quad \text{if } k \in S_1, \quad s_k = \max\{p_k, q_k\} \quad \text{if } k \in S_2; \\
t_k &= \max\{p_k, q_k\} \quad \text{if } k \in S_1, \quad t_k = \min\{p_k, q_k\} \quad \text{if } k \in S_2.
\end{align*}
\]

For $p, q \in \mathbb{R}^N$, we introduce a new order by defining $p \leq_g q$ if

\[
p_h \leq q_h \text{ for } h \in S_1, \quad p_h \geq q_h \text{ for } h \in S_2.
\]

Given a set $C \subseteq \mathbb{R}^N$, a point $p^* \in C$ is called a minimal element if there exists no $q \in C$ with $q \leq_g p^*$ and $q \neq p^*$. Similarly, a point $q^* \in C$ is called a maximal element if there exists no $q \in C$ with $q \geq_g p^*$ and $q \neq p^*$. In general, there may exist many minimal and maximal elements in C.

Definition 3.6. We say that a function $g : \mathbb{R}^N \to \mathbb{R}$

(i) is submodular if $g(p \land q) + g(p \lor q) \leq g(p) + g(q)$ for any $p, q \in \mathbb{R}^N$;

(ii) is generalized submodular if $g(p \land_g q) + g(p \lor_g q) \leq g(p) + g(q)$ for any $p, q \in \mathbb{R}^N$;

(iii) is polyhedral L^2-convex if it is a polyhedral convex function and satisfies

\[
g(p \land (q + \alpha \mathbf{1})) + g((p - \alpha \mathbf{1}) \lor q) \leq g(p) + g(q) \quad (\forall p, q \in \mathbb{R}^N, \alpha \in \mathbb{R}_+);
\]

(iv) is polyhedral generalized L^2-convex if it is a polyhedral convex function and satisfies

\[
g(p \land_g (q + \alpha \mathbf{1})) + g((p - \alpha \mathbf{1}) \lor_g q) \leq g(p) + g(q) \quad (\forall p, q \in \mathbb{R}^N, \alpha \in \mathbb{R}_+).
\]

A polyhedron is said to be integral if all its vertices are integral. A polyhedral (generalized) L^2-convex function $g : \mathbb{R}^N \to \mathbb{R}$ is said to be integral if for every $x \in \mathbb{R}^N$, the set $\arg\min\{g(p) - x^\top p \mid p \in \mathbb{R}^N\}$ is an integral polyhedron (or an empty set).

Clearly, a polyhedral L^2-convex function is submodular but the reverse need not be true. See [34] for details on L^2-convex functions. A polyhedral generalized L^2-convex function is generalized submodular but the reverse need not be true.

Ausubel and Milgrom [5, Theorem 10] prove that goods are substitutes for a bidder if and only if his indirect utility function is submodular.

Theorem 3.7. Let $u : \Gamma \to \mathbb{R}$ be a value function defined on a finite integer interval Γ. Then, u is GM-concave if and only if its indirect utility function $V(p) = \max\{u(x) - p^\top x \mid x \in \Gamma\}$ is a polyhedral generalized L^2-convex function in $p \in \mathbb{R}^N$. Moreover, for an integer-valued value function u, it is GM-concave if and only if V is an integral polyhedral generalized L^2-convex function.

Proof. Proof is given in Section 6.3. \[\square\]

In this section we have given three different equivalent conditions of the GGSC condition. In the following we may state any of these four as a sufficient condition for the existence of a Walrasian equilibrium. Observe that we do not impose any monotonicity condition, which means the model can accommodate indivisible bads. In this case, equilibrium prices can be negative and the seller pays the bidders for buying bads.
4. Equilibrium Theorems

For the auction model, define the Lyapunov function $\mathcal{L} : \mathbb{R}^N \to \mathbb{R}$ by

$$\mathcal{L}(p) = \sum_{i \in B} V^i(p) + p^\top \omega,$$

(4.1)

where $V^i(p)$ is the indirect utility of bidder $i \in B$ at prices p and $p^\top \omega$ is the seller’s value of her goods at prices p. This type of function has been used in the literature for economies with divisible goods (see, e.g., [1, 53]) but was only recently explored by Ausubel [3, 4] and Sun and Yang [48] in the context of indivisible goods. The Lyapunov function will be used in our auction design. Note that the following two lemmas do not assume that value functions u^i satisfy the GGSC condition. In other words, the lemmas hold for general value functions.

Lemma 4.1. Suppose that $(p, (z^i \mid i \in B))$ is an equilibrium. Then, $(z^i \mid i \in B)$ is efficient. Moreover, $(p, (y^i \mid i \in B))$ is an equilibrium for any efficient allocation $(y^i \mid i \in B)$.

Proof. Take any allocation $(y^i \mid i \in B)$. Since $z^i \in D_i(p)$, we have

$$u^i(z^i) - p^\top z^i \geq u^i(y^i) - p^\top y^i.$$

(4.2)

It follows that

$$\sum_{i \in B} u^i(z^i) - p^\top (\sum_{i \in B} z^i) \geq \sum_{i \in B} u^i(y^i) - p^\top (\sum_{i \in B} y^i),$$

which implies

$$\sum_{i \in B} u^i(z^i) - \sum_{i \in B} u^i(y^i) \geq p^\top (\sum_{i \in B} z^i - \sum_{i \in B} y^i) = p^\top (\omega - \omega) = 0. \tag{4.3}$$

Therefore, $(z^i \mid i \in B)$ is efficient.

We then assume that the allocation $(y^i \mid i \in B)$ is efficient. Since $(z^i \mid i \in B)$ is also efficient, we have $\sum_{i \in B} u^i(z^i) = \sum_{i \in B} u^i(y^i)$, which, together with (4.3), implies that the inequality in (4.2) must hold with equality. Hence, $y^i \in D_i(p)$ holds for every $i \in B$, i.e., $(p, (y^i \mid i \in B))$ is an equilibrium. \hfill \Box

Recall the definition of the market value $R(\omega)$ in Section 2.

Lemma 4.2. A price vector p^* is a Walrasian equilibrium price vector if and only if it is a minimizer of the Lyapunov function \mathcal{L} satisfying $\mathcal{L}(p^*) = R(\omega)$.

Proof. Let $(z^i \mid i \in B)$ be an efficient allocation. Then, we have $\sum_{i \in B} u^i(z^i) = R(\omega)$. Also, let $p \in \mathbb{R}^N$. Since $V^i(p) \geq u^i(z^i) - p^\top z^i$ holds for all $i \in B$, we have

$$\mathcal{L}(p) = \sum_{i \in B} V^i(p) + p^\top \omega \geq \sum_{i \in B} (u^i(z^i) - p^\top z^i) + p^\top \omega = \sum_{i \in B} u^i(z^i) = R(\omega). \tag{4.4}$$

Suppose that p^* is an equilibrium price vector. Then, Lemma 4.1 implies that $(p^*, (z^i \mid i \in B))$ is an equilibrium, i.e., $z^i \in D_i(p^*)$ holds for all $i \in B$. Hence, $V^i(p^*) = u^i(z^i) - (p^*)^\top z^i$ holds for all $i \in B$, which, together with (4.4), implies that $\mathcal{L}(p^*) = R(\omega)$. Note that it follows from the inequality (4.4) and $\mathcal{L}(p^*) = R(\omega)$ that p^* is a minimizer of \mathcal{L}.

We then assume that p^* satisfies $\mathcal{L}(p^*) = R(\omega)$. Then, the inequality (4.4) implies that $V^i(p^*) = u^i(z^i) - (p^*)^\top z^i$ holds for all $i \in B$, i.e., $z^i \in D_i(p^*)$ for all $i \in B$. This means that $(p^*, (z^i \mid i \in B))$ is an equilibrium. \hfill \Box
We will now demonstrate the existence of a Walrasian equilibrium under the GGSC condition and examine the structure of the set of Walrasian equilibrium price vectors.

Definition 4.3. Let $D \subseteq \mathbb{R}^N$ be a nonempty set. We say that
(i) D is a lattice if $p \wedge q \in D$, $p \vee q \in D \ (\forall p, q \in D)$.
(ii) D is a generalized lattice if $p \wedge q \in D$, $p \vee q \in D \ (\forall p, q \in D)$.
(iii) D is L^2-convex if $(p - \lambda \mathbf{1}) \vee q \in D$, $p \wedge (q + \lambda \mathbf{1}) \in D \ (\forall p, q \in D, \forall \lambda \in \mathbb{R}_+)$.
(iv) D is generalized L^2-convex if $(p - \lambda \mathbf{1}) \vee q \in D$, $p \wedge (q + \lambda \mathbf{1}) \in D \ (\forall p, q \in D, \forall \lambda \in \mathbb{R}_+)$.

Clearly, a set D is a generalized L^2-convex if and only if it is a polyhedron given as $\{p \in \mathbb{R}^N \mid p_i - p_j \leq c_{i,j} (i, j \in N, i \neq j)\}$ with numbers a_i, b_i ($i \in N$) and $c_{i,j}$ ($i, j \in N, i \neq j$) such that $-a_i, b_i \in \mathbb{R} \cup \{+\infty\}$ and $c_{i,j} \in \mathbb{R} \cup \{+\infty\}$. Moreover, the polyhedron is integral if and only if the numbers a_i, b_i, and $c_{i,j}$ are integral (or $+\infty$ or $-\infty$).

(ii) D is generalized L^2-convex if and only if it is a polyhedron given as

$$D = \{p \in \mathbb{R}^N \mid a_i \leq p_i \leq b_i (i \in N), p_i - p_j \leq c_{i,j} (i, j \in N, i \neq j), k = 1, 2\}$$

with numbers a_i, b_i ($i \in N$) and $c_{i,j}$ ($i, j \in N, i \neq j$) such that $-a_i, b_i \in \mathbb{R} \cup \{+\infty\}$ and $c_{i,j} \in \mathbb{R} \cup \{+\infty\}$. Moreover, the polyhedron is integral if and only if the numbers a_i, b_i, and $c_{i,j}$ are integral (or $+\infty$ or $-\infty$).

Proof. The statement (i) is already shown in [34, 37], while the statement (ii) follows from (i) and the definition of a generalized L^2-convex set.

The following theorems will be used to prove the convergence of the generalized double-track auction. Proof is given in Section 6.3.

Theorem 4.5. Assume that every bidder $i \in B$ has a GM-concave value function u^i. Then the Lyapunov function \mathcal{L} defined by (4.1) is a polyhedral generalized L^2-convex function. Moreover, if value functions $u^i (i \in B)$ take only integer values, then \mathcal{L} is an integral polyhedral generalized L^2-convex function.

The next theorem establishes the existence of a Walrasian equilibrium under the GGSC condition and reveals the structure of the set of Walrasian equilibrium price vectors. Proof is given in Section 6.4.

Theorem 4.6. Assume that every bidder $i \in B$ has a GM-concave value function u^i. Let $\Lambda \subseteq \mathbb{R}^N$ be the set of Walrasian equilibrium price vectors.
(i) Λ is a nonempty compact, generalized L^2-convex set which is equal to the set of minimizers of the Lyapunov function. In particular, Λ is a bounded polyhedron and has unique minimal and maximal equilibrium price vectors, denoted by \bar{p} and \tilde{p}, respectively.
(ii) Suppose further that the value functions $u^i (i \in B)$ are integer-valued. Then, Λ is a nonempty integral polyhedron and vectors \bar{p} and \tilde{p} are integral.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Theorem 4.5 implies that the Lyapunov function is a well-behaved function meaning that a local minimum is also a global minimum, while Theorem 4.6 asserts that the set of Walrasian equilibrium price vectors possesses an elegant geometry, i.e., the set is a polyhedron described by simple inequalities. We also point out that when either \(S_1 = \emptyset \) or \(S_2 = \emptyset \) (i.e., the case of GS), Theorem 4.6 (i) has sharpened the lattice result of Ausubel [4] and Gul and Stacchetti [19], which generalizes the well-known lattice result of Shapley and Shubik [45] for the assignment market (see [26]) in which each agent demands at most one item, a special case of GS.

5. Price Adjustment Process

In this section we present a price adjustment process which can always globally converge to a Walrasian equilibrium in finitely many steps. In the following, we assume that every bidder \(i \)’s value function \(u^i \) takes integer values. This assumption is quite standard and natural, since one cannot value a bundle of goods more closely than to the nearest penny; see, e.g., [4, 48]. We see from this assumption and Theorem 4.6 (ii) that there exists an integral equilibrium price vector. We can therefore concentrate on integral price vectors in the following discussion.

Define
\[
\square = \{ d \in \mathbb{Z}^N : d_k \in \{0, +1\}, \forall k \in S_1, \; d_l \in \{0, -1\}, \forall l \in S_2 \}.
\]

For any bidder \(i \in B \), any price vector \(p \in \mathbb{Z}^N \), and any price variation \(d \in \square \), choose
\[
\hat{z}^i \in \arg \min_{z^i \in D^i(p)} d^T z^i.
\]

The next lemma asserts that bidder \(i \)’s optimal bundle \(\hat{z}^i \) in (5.1) chosen from \(D^i(p) \) remains the same for all price vectors on the line segment from \(p \) to \(p + d \).

Lemma 5.1. Assume that every bidder \(i \) in \(B \) has an integer-valued GM-concave value function \(u^i \). Let \(i \in B \), \(p \in \mathbb{Z}^N \), and \(d \in \square \). For every \(\lambda \) with \(0 \leq \lambda \leq 1 \), the vector \(\hat{z}^i \) with (5.1) satisfies \(\hat{z}^i \in D^i(p + \lambda d) \). Moreover, it holds that
\[
L(p + \lambda d) = L(p) + \lambda(d^T \omega - \sum_{i \in B} d^T \hat{z}^i),
\] i.e., \(L(p + \lambda d) \) is linear in \(\lambda \) in the interval \(0 \leq \lambda \leq 1 \).

Proof. The proof given below is similar to those given in [4, 48]. Suppose, to the contrary, that there exists \(\lambda \) such that \(0 < \lambda \leq 1 \) but \(\hat{z}^i \notin D^i(p + \lambda d) \). By the EGSI condition for \(\hat{z}^i \), there exists an EGSI improvement bundle \(z^i \) with
\[
u^i(z^i) - (p + \lambda d)^T z^i > u^i(\hat{z}^i) - (p + \lambda d)^T \hat{z}^i.\]

By the choice of \(\hat{z}^i \), we see that
\[
u^i(\hat{z}^i) - (p + \lambda d)^T \hat{z}^i \geq u^i(x^i) - (p + \lambda d)^T x^i \quad \text{for all } x^i \in D^i(p)
\]
since \(u^i(\hat{z}^i) - p^T \hat{z}^i = u^i(x^i) - p^T x^i \) and \(d^T \hat{z}^i \leq d^T x^i \). Hence, \(z^i \notin D^i(p) \) holds by (5.3). It follows from the integrality assumption of value function \(u^i \) and \(p \in \mathbb{Z}^N \) that
\[
u^i(z^i) - p^T z^i \leq u^i(\hat{z}^i) - p^T \hat{z}^i - 1.
\]
On the other hand, since $0 \leq \lambda d_k \leq 1$ for any $k \in S_1$ and $-1 \leq \lambda d_l \leq 0$ for any $l \in S_2$, and z^i is an EGSI improvement bundle of \tilde{z}^i, we have $|\lambda d^T (\tilde{z}^i - z^i)| \leq 1$, implying that
\[
\lambda d^T \tilde{z}^i - 1 \leq \lambda d^T z^i. \tag{5.5}
\]
From inequalities (5.4) and (5.5) follows that
\[
u'(z^i) - (p + \lambda d)^T z^i \leq \nu'(\tilde{z}^i) - (p + \lambda d)^T \tilde{z}^i,
\]
yielding a contradiction to (5.3). This concludes the proof of the first part, from which the second part follows immediately. \qed

We now describe the basic idea of the price adjustment process. At time $t \in \mathbb{Z}_+$, the auctioneer announces the current price vector $p(t) \in \mathbb{Z}^N$ and then asks every bidder i to report his demand $D^i(p(t))$ at prices $p(t)$. Then the auctioneer uses all bidders’ reported demand sets $D^i(p(t))$, $i \in B$, to determine the next price vector $p(t + 1)$. The auctioneer chooses a price adjustment $d \in \mathbb{Z}$ that can reduce the value of the Lyapunov function \mathcal{L} as much as possible. In other words, the auctioneer needs to find d that solves the following problem:
\[
\max \{ \mathcal{L}(p(t)) - \mathcal{L}(p(t) + d) \mid d \in \mathbb{Z} \}. \tag{5.6}
\]
However, because the Lyapunov function \mathcal{L} involves every bidder’s private valuation on every bundle of goods, it will be practically impossible for the auctioneer to obtain such information. Instead of tackling the problem (5.6) directly, the auctioneer can solve the following problem:
\[
\max \left\{ \sum_{i \in B} \left(\min_{\tilde{z}^i \in D^i(p(t))} d^T \tilde{z}^i \right) - \omega \right\} \mid d \in \mathbb{Z} \}. \tag{5.7}
\]
The equivalence between (5.6) and (5.7) follows from the equation (5.2) in Lemma 5.1. Observe that this formula contains only every bidder’s reported demand set $D^i(p(t))$ and nothing else. It states that when the prices are adjusted from $p(t)$ to $p(t + 1) = p(t) + d(t)$ with $d(t)$ being a solution to the problem (5.7), every bidder i tries to minimize his indirect utility loss $d^T \tilde{z}^i$, whereas the auctioneer aims to achieve the highest gain. We stress that the problem (5.7) is actually solved by the auctioneer based upon every bidder’s reported demand $D^i(p(t))$.

We are now ready to give a formal description of the price adjustment process.

The price adjustment process

Step 1: The auctioneer announces an initial price vector $p(0) \in \mathbb{Z}^N$. Let $t := 0$ and go to Step 2.

Step 2: The auctioneer asks every bidder i to report his demand $D^i(p(t))$ at $p(t)$. Then based on reported demands $D^i(p(t))$, the auctioneer finds a solution $d(t)$ to the problem (5.7). If $\mathcal{L}(p(t) + d(t)) = \mathcal{L}(p(t))$, go to Step 3. Otherwise, set the next price vector $p(t + 1) := p(t) + d(t)$ and $t := t + 1$. Return to Step 2.

Step 3: The auctioneer asks every bidder i to report his demand $D^i(p(t))$ at $p(t)$. Then based on reported demands $D^i(p(t))$, the auctioneer finds a solution $d(t)$ to (5.7), where \mathbb{Z} is replaced by $-\mathbb{Z}$. If $\mathcal{L}(p(t) + d(t)) = \mathcal{L}(p(t))$, then the process stops. Otherwise, set the next price vector $p(t + 1) := p(t) + d(t)$ and $t := t + 1$. Return to Step 3.

Several remarks are in order. First, observe that in Step 2, the auctioneer adjusts the price of each type of good $i \in S_1$ upwards but the price of each type of good $i \in S_2$ download,
whereas in Step 3, the auctioneers adjusts prices in the reverse way. This auction extends the double-track auction of Sun and Yang [48] from set utility functions $u^i : \{0, 1\}^N \rightarrow \mathbb{Z}$ to more general utility functions $u^i : \Gamma \rightarrow \mathbb{Z}$ and is called a generalized double-track auction. This auction simultaneously adjusts prices of goods in one family upwards and prices of those in another family downwards, being a blend of ascending and descending auctions. Second, the process terminates in Step 3 and never goes from Step 3 to Step 2. This is a crucial step quite different from the global auction of Ausubel [4] which requires repeated implementation of his ascending auction and descending auction one after the other in the GS case. Third, in the current process the auctioneer computes only an optimal solution to (5.7) which need not be the minimal or maximal element as required in the auction of Ausubel [4]. This will improve computational efficiency.

Theorem 5.2. Assume that every bidder $i \in B$ has an integer-valued GM-concave value function u^i. Starting with any integer price vector $p(0) \in \mathbb{Z}^N$, the price adjustment process converges to an equilibrium price vector in a finite number of rounds.

We then consider the computation of a minimal equilibrium price vector p. Recall that such a vector p is uniquely determined by Theorem 4.6. The following result shows that if the auctioneer starts with a particular price vector $p(0) \in \mathbb{Z}^N$ with very low price for each type of good in S_1 and very high price for each type of good in S_2, say, $p_i(0) = -L$ for every $i \in S_1$ and $p_i(0) = +L$ for every $i \in S_2$ with a sufficiently large positive integer L, the price adjustment process will terminate at the minimal equilibrium price vector p, provided that in each round t the minimal $d(t)$ that solves the problem (5.7) is chosen. In this case the auction stops immediately after going to Step 3, i.e., there is no update of the price vector in Step 3.

Theorem 5.3. Assume that every bidder $i \in B$ has an integer-valued GM-concave value function u^i. Starting at an integer price vector $p(0) \in \mathbb{Z}^N$ with $p(0) \leq_g p$, the price adjustment process converges to the minimal equilibrium price vector p in a finite number of rounds if in every round $t \in \mathbb{Z}_+$ the auctioneer chooses the minimal $d(t)$ (in the sense \leq_g) that solves the problem (5.7).

We can also show that the unique maximal equilibrium price vector \bar{p} can be found by a variant of the price adjustment process without Step 2 (i.e., Step 3 starts immediately just after Step 1) if we start from an appropriately chosen price vector. The proof is similar to that for Theorem 5.3 and omitted.

Theorem 5.4. Assume that every bidder $i \in B$ has an integer-valued GM-concave value function u^i. Starting at an integer price vector $p(0) \in \mathbb{Z}^N$ with $p(0) \geq_g \bar{p}$, the variant of the price adjustment process mentioned above converges to the maximal equilibrium price vector \bar{p} in a finite number of rounds if in every round $t \in \mathbb{Z}_+$ the auctioneer chooses the maximal $d(t)$ (in the sense \leq_g) that solves the problem (5.7).

6. Proofs

This section contains proofs missing in the main part of the paper. The proofs of Theorems 3.3, 3.7, and 4.6 given below appear most difficult and make extensive use of results from discrete convex analysis for which Murota [34] and Fujishige [16] are excellent references.

6.1. Proof of Theorem 3.3

Recall that U represents the $n \times n$ matrix for which the i-th column is given by χ_i if $i \in S_1$ and by $-\chi_i$ if $i \in S_2$ (see Section 3). Note that $U^{-1} = U = U^\top$ and $U^\top U$ is equal to the identity matrix, i.e., $U^\top U x = x$ for every vector x.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
For a function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \), we define a finite integer interval \(\hat{\Gamma} \) and a function \(\hat{u} : \hat{\Gamma} \to \mathbb{R} \) by
\[
\hat{\Gamma} = \{ Uy \mid y \in \Gamma \}, \quad \hat{u}(x) = u(Ux) \quad (x \in \hat{\Gamma}).
\]
(6.1)

Then, the following property is easy to see from the definition of GM-concavity.

Proposition 6.1. A function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \) is GM-concave if and only if the function \(\hat{u} : \hat{\Gamma} \to \mathbb{R} \) defined by (6.1) is \(\mathcal{M}^\natural \)-concave.

The GGSC condition for function \(u \) can be rewritten in terms of the function \(\hat{u} \) given by (6.1) as follows. For \(p \in \mathbb{R}^N \), we define
\[
D(\hat{u}, p) = \arg \max_{z \in \hat{\Gamma}} \{ \hat{u}(z) - p^\top z \}.
\]

\((\text{GGS}^\pm)\)
(i) For every \(p \in \mathbb{R}^N \), \(D(\hat{u}, p) \) is a discrete convex set.
(ii) Let \(p \in \mathbb{R}^N \), \(\delta > 0 \), and \(x \in D(\hat{u}, p) \).

(ii-1) For any \(k \in S_1 \), there exists \(y \in D(\hat{u}, p + \delta \chi_k) \) such that
\[
y_h \geq x_h \quad (\forall h \in N \setminus \{k\}), \quad \sum_{h \in N} y_h \leq \sum_{h \in N} x_h.
\]

(ii-2) For any \(k \in S_2 \), there exists \(y \in D(\hat{u}, p - \delta \chi_k) \) such that
\[
y_h \leq x_h \quad (\forall h \in N \setminus \{k\}), \quad \sum_{h \in N} y_h \geq \sum_{h \in N} x_h.
\]

Proposition 6.2. A function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \) satisfies the GGSC condition if and only if the function \(\hat{u} : \hat{\Gamma} \to \mathbb{R} \) given by (6.1) satisfies \((\text{GGS}^\pm)\).

By Propositions 6.1 and 6.2, Theorem 3.3 is equivalent to the following statement:

Theorem 6.3. A function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \) satisfies the condition \((\text{GGS}^\pm)\) if and only if it is an \(\mathcal{M}^\natural \)-concave function.

In the following, we prove Theorem 6.3 instead of Theorem 3.3.

6.1.1. Proof of “if” part
The “if” part of Theorem 6.3 is proven first. A generalized polymatroid (\(g\)-polymatroid, for short) is a polyhedron of the form
\[
Q = \{ x \in \mathbb{R}^N \mid \mu(X) \leq x(X) \leq \rho(X) \quad (X \in 2^N) \}
\]
given by a pair of submodular/supermodular functions \(\rho : 2^N \to \mathbb{R} \cup \{+\infty\}, \mu : 2^N \to \mathbb{R} \cup \{-\infty\} \) satisfying the inequality
\[
\rho(X) - \mu(Y) \geq \rho(X \setminus Y) - \mu(Y \setminus X) \quad (\forall X, Y \in 2^N).
\]
If \(\rho \) and \(\mu \) are integer-valued, then \(Q \) is an integral polyhedron; in such a case, we say that \(Q \) is an integral \(g \)-polymatroid. Note that for any integral polyhedron \(Q \), the set \(Q \cap \mathbb{Z}^N \) is a discrete convex set.

Proposition 6.4 (see, e.g., [34, Chapter 6]). Let \(u : \Gamma \to \mathbb{R} \) be an \(\mathcal{M}^\natural \)-concave function defined on a finite integer interval \(\Gamma \). For every \(p \in \mathbb{R}^N \), \(D(u, p) \) is the set of integral vectors in an integral \(g \)-polymatroid; it is a discrete convex set, in particular.
Proposition 6.4 immediately implies the condition (i) in (GGS±).

To prove the second condition in (GGS±), we show below a (slightly) stronger statement.

Lemma 6.5. Let $u : \Gamma \to \mathbb{R}$ be an M^δ-concave function defined on a finite integer interval Γ. For $p \in \mathbb{R}^N$, $\delta > 0$, $x \in D(u, p)$, and $k \in N$, the following properties hold:

(a) There exists $y \in D(u, p + \delta \chi_k)$ such that

$$y_h \geq x_h \quad (\forall h \in N \setminus \{k\}), \quad \sum_{h \in N} y_h \leq \sum_{h \in N} x_h. \quad (6.2)$$

(b) There exists $y \in D(u, p - \delta \chi_k)$ such that

$$y_h \leq x_h \quad (\forall h \in N \setminus \{k\}), \quad \sum_{h \in N} y_h \geq \sum_{h \in N} x_h.$$

Below we prove the claim (a) only since (b) can be done in the same way. Let $q = p + \delta \chi_k$, and y be a vector in $D(u, q)$ which minimizes the value $\|y - x\|_1$ among all vectors in $D(u, q)$. We prove that the vector y satisfies the condition (6.2). The proof below is quite similar to the one for [38, Theorem 8] and [34, Theorem 6.34 (2)].

To prove the first inequality in (6.2), assume, to the contrary, that $y_i < x_i$ for some $i \in N \setminus \{k\}$. By M^δ-concavity of u applied to x, y, and $i \in \text{supp}^-(x - y)$, we have

$$u(x) + u(y) \leq u(x - \chi_i + \chi_j) + u(y + \chi_i - \chi_j) \quad (6.3)$$

for some $j \in \text{supp}^-(x - y) \cup \{0\}$. Since $x \in D(u, p)$ and $y \in D(u, q)$, it holds that

$$u(x) - p^T x \geq u(x - \chi_i + \chi_j) - p^T (x - \chi_i + \chi_j), \quad (6.4)$$
$$u(y) - q^T y \geq u(y + \chi_i - \chi_j) - q^T (y + \chi_i - \chi_j). \quad (6.5)$$

From (6.4) and (6.5) follows that

$$u(x) + u(y) \geq \{u(x - \chi_i + \chi_j) - p^T (-\chi_i + \chi_j)\} + \{u(y + \chi_i - \chi_j) - q^T (\chi_i - \chi_j)\}$$
$$= u(x - \chi_i + \chi_j) + u(y + \chi_i - \chi_j) - \delta \chi_k^T (\chi_i - \chi_j)$$
$$= u(x - \chi_i + \chi_j) + u(y + \chi_i - \chi_j) + \delta \chi_k \chi_j$$
$$\geq u(x - \chi_i + \chi_j) + u(y + \chi_i - \chi_j), \quad (6.6)$$

where the second equality is by the fact that $i \neq k$. From the inequalities (6.3) and (6.6) we see that all inequalities in (6.3), (6.4), (6.5), and (6.6) hold with equality. This implies, in particular, that $y + \chi_i - \chi_j \in D(u, q)$, a contradiction to the choice of y since

$$\|(y + \chi_i - \chi_j) - x\|_1 < \|y - x\|_1.$$

Hence, we have $y_h \geq x_h$ for all $h \in N \setminus \{k\}$.

We then prove the second inequality in (6.2), where we use the following property of M^δ-concave functions:

Proposition 6.6 ([34, Chapter 6], [35]). Let $u : \Gamma \to \mathbb{R}$ be an M^δ-concave function. For every $x, y \in \Gamma$ with $\sum_{h \in N} x_h < \sum_{h \in N} y_h$, there exists some $j \in \text{supp}^-(x - y)$ such that

$$u(x) + u(y) \leq u(x + \chi_j) + u(y - \chi_j).$$

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Suppose, to the contrary, that $\sum_{h \in N} y_h > \sum_{h \in N} x_h$. By Proposition 6.6, there exists some $j \in \text{supp}^-(x - y)$ such that

$$u(x) + u(y) \leq u(x + \chi_j) + u(y - \chi_j). \quad (6.7)$$

Since $x \in D(u, p)$ and $y \in D(u, q)$, it holds that

$$u(x) - p^\top x \geq u(x + \chi_j) - p^\top (x + \chi_j), \quad (6.8)$$

$$u(y) - q^\top y \geq u(y - \chi_j) - q^\top (y - \chi_j). \quad (6.9)$$

Hence, we have

$$u(x) + u(y) \geq \{u(x + \chi_j) - p^\top \chi_j\} + \{u(y - \chi_j) + q^\top \chi_j\}$$

$$= u(x + \chi_j) + u(y - \chi_j) + \delta \chi_j \geq u(x + \chi_j) + u(y - \chi_j). \quad (6.10)$$

Thus, all inequalities in (6.7), (6.8), (6.9), and (6.10) hold with equality. This implies, in particular, that $y - \chi_j \in D(u, q)$, a contradiction to the choice of y since

$$\|(y - \chi_j) - x\|_1 < \|y - x\|_1.$$

Hence, we have $\sum_{h \in N} y_h \leq \sum_{h \in N} x_h$. This concludes the proof for “if” part of Theorem 6.3.

6.1.2. Proof of “only if” part

To prove the “only if” part of Theorem 6.3, we use a characterization of M^\sharp-concave functions by demand sets. Recall that $\text{conv}(C)$ denotes the convex hull of a set $C \subseteq \mathbb{R}^N$.

Proposition 6.7 ([34, Theorem 6.30]). A function $u : \Gamma \to \mathbb{R}$ defined on a finite integer interval Γ is M^\sharp-concave if and only if $D(u, p)$ is the set of integral vectors in an integral g-polymatroid for every $p \in \mathbb{R}^N$.

We now give a proof of the “only if” part of Theorem 6.3. Let $u : \Gamma \to \mathbb{R}$ be a function defined on a finite integer interval Γ satisfying the condition (GGS±). We use Proposition 6.7 to prove the M^\sharp-concavity of u, i.e., we show that for every $p \in \mathbb{R}^N$, there exists some integral g-polymatroid $Q \subseteq \mathbb{R}^N$ such that $D(u, p) = Q \cap \mathbb{Z}^N$. By the condition (GGS±), $D(u, p)$ is a discrete convex set. Hence, it suffices to show that $\text{conv}(D(u, p))$ is a g-polymatroid; note that $\text{conv}(D(u, p))$ is an integral polyhedron. In the proof, the following characterization of g-polymatroids is used.

Proposition 6.8 (cf. [18, Theorem A.1]). A bounded polyhedron $Q \subseteq \mathbb{R}^N$ is a g-polymatroid if and only if for every edge E of Q and every distinct points $x, y \in E$, $x - y$ is a multiple of a vector taken from the set

$$\{+\chi_i \mid i \in N\} \cup \{-\chi_j \mid j \in N\} \cup \{+\chi_i - \chi_j \mid i, j \in N, \ i \neq j\}. \quad (6.11)$$

Let $Q = \text{conv}(D(u, p))$, and E be an edge of Q. Since u is a function defined on a finite set Γ, there exists some $q \in \mathbb{R}^N$ such that $E = \text{conv}(D(u, q))$. Since $D(u, q)$ is a discrete convex set by the condition (GGS±), we have $E \cap \mathbb{Z}^N = D(u, q)$.

Let $x, y \in E$ be the two endpoints of the edge E. We have $x, y \in E \cap \mathbb{Z}^N = D(u, q)$ since $E = \text{conv}(D(u, q))$. Since $x \neq y$, we may assume that $x_k > y_k$ for some $k \in N$.

By the choice of x and y, there exists some sufficiently small $\delta > 0$ such that

$$D(u, q + \delta \chi_k) = \{y\}, \quad D(u, q - \delta \chi_k) = \{x\}. \quad (6.12)$$
Since \(x, y \in D(u, q) \), the condition \((\text{GGS} \pm) \) (ii) and (6.12) imply that
\[
y_i \geq x_i \ (\forall i \in N \setminus \{k\}, \quad \sum_{i \in N} y_i \leq \sum_{i \in N} x_i; \quad (6.13)
\]
indeed, if \(k \in S_1 \), then this follows immediately from (ii-1) in \((\text{GGS} \pm)\) and the first equation in (6.12); if \(k \in S_2 \), then (6.13) follows from (ii-2) and the second equation in (6.12), where the roles of \(x \) and \(y \) are changed.

If \(y_i = x_i \) holds for all \(i \in N \setminus \{k\} \), then we are done since \(x - y = \alpha \chi_k \) holds for some \(\alpha > 0 \). Hence, we assume \(x_h < y_h \) for some \(h \in N \setminus \{k\} \). Then, in a similar way as in the discussion above with the roles of \(x \) and \(y \) changed, we can show that
\[
x_i \geq y_i \ (\forall i \in N \setminus \{h\}), \quad \sum_{i \in N} x_i \leq \sum_{i \in N} y_i, \quad (6.14)
\]
which, together with (6.13), implies
\[
x_i = y_i \ (\forall i \in N \setminus \{h, k\}), \quad \sum_{i \in N} x_i = \sum_{i \in N} y_i.
\]
From this follows that \(x - y = \alpha (\chi_k - \chi_h) \) for some \(\alpha > 0 \). This concludes the proof for “only if” part of Theorem 6.3.

6.2. Proof of Theorem 3.5

Theorem 3.5 follows from immediately from Theorem 3.3 and the following theorem.

Theorem 6.9. A function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \) satisfies the EGSI condition if and only if it is GM-concave.

We now prove Theorem 6.9. For a function \(u : \Gamma \to \mathbb{R} \) on a finite integer interval \(\Gamma \), let \(\tilde{u} : \tilde{\Gamma} \to \mathbb{R} \) be a function defined by (6.1). We consider the single improvement condition for a function \(\tilde{u} \), which is given as follows:

- For any \(p \in \mathbb{R}^N \) and any \(x, y \in \tilde{\Gamma} \) with \(\tilde{u}(y) - p^\top y > \tilde{u}(x) - p^\top x \), there exists \(z \in \tilde{\Gamma} \) such that \(\tilde{u}(z) - p^\top z > \tilde{u}(x) - p^\top x \) and \(z = x - \chi_k + \chi_l \) for some \(k \in \text{supp}^+(x - y) \cup \{0\} \) and \(l \in \text{supp}^- (x - y) \cup \{0\} \).

Proposition 6.10 ([34, Theorem 11.4], [38, Theorem 7]). A function \(\tilde{u} : \tilde{\Gamma} \to \mathbb{R} \) defined on a finite integer interval \(\tilde{\Gamma} \) satisfies the single improvement condition if and only if it is \(M^\circ \)-concave.

It is not difficult to see that function \(u \) satisfies the EGSI condition if and only if \(\tilde{u} \) satisfies the single improvement condition. By Proposition 6.1, function \(u \) is GM-concave if and only if \(\tilde{u} \) is \(M^\circ \)-concave. Hence, Theorem 6.9 follows immediately from Proposition 6.10. This concludes the proof of Theorem 3.5.

6.3. Proof of Theorems 3.7 and 4.5

We give some properties of (generalized) \(M^\circ \)-concavity and polyhedral (generalized) \(L^2 \)-convexity, which are useful in proving Theorem 3.7.

Proposition 6.11 ([16, 34]). For a function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \), let \(u^\circ : \mathbb{R}^N \to \mathbb{R} \) be a function given by
\[
u^\circ(p) = \min \{ p^\top x - u(x) \mid x \in \Gamma \} \quad (p \in \mathbb{R}^N).
\]

Then, \(u \) is an \(M^\circ \)-concave function if and only if \(-u^\circ \) is a polyhedral \(L^2 \)-convex function. Moreover, for an integer-valued function \(u \), it is \(M^\circ \)-concave if and only if \(-u^\circ \) is an integral polyhedral \(L^2 \)-convex function.
Proposition 6.12 ([34, Theorem 7.10]). Let $f, g : \mathbb{R}^N \to \mathbb{R}$ be (integral) polyhedral L^\natural-convex functions, and $x \in \mathbb{R}^N$.

(i) The function $f + g$ is (integral) polyhedral L^\natural-convex.

(ii) The function $g_x(p) = g(p) + x^\top p$ is (integral) polyhedral L^\natural-convex in p.

Propositions above for M^\natural-convexity and L^\natural-convexity can be rewritten as follows in terms of generalized M^\natural-convexity and L^\natural-convexity.

Proposition 6.13. Let $f, g : \mathbb{R}^N \to \mathbb{R}$ be (integral) polyhedral generalized L^\natural-convex functions, and $x \in \mathbb{R}^N$.

(i) The function $f + g$ is (integral) polyhedral generalized L^\natural-convex.

(ii) The function $g_x(p) = g(p) + x^\top p$ is (integral) polyhedral generalized L^\natural-convex in p.

Proposition 6.14. For a function $u : \Gamma \to \mathbb{R}$ defined on a finite integer interval Γ, let $u^\circ : \mathbb{R}^N \to \mathbb{R}$ be a function given by (6.15). Then, u is a GM-concave function if and only if $-u^\circ$ is a polyhedral generalized L^\natural-convex function. Moreover, for an integer-valued function u, it is GM-concave if and only if $-u^\circ$ is an integral polyhedral generalized L^\natural-convex function.

Proof. Given a function u, we define a function $\tilde{u} : \tilde{\Gamma} \to \mathbb{R}$ by (6.1). By Proposition 6.1, function u is GM-concave if and only if \tilde{u} is M^\natural-concave.

Similarly to the function u°, we define $\tilde{u}^\circ : \mathbb{R}^N \to \mathbb{R}$ by

$$
\tilde{u}^\circ(p) = \min \{ p^\top x - \tilde{u}(x) \mid x \in \tilde{\Gamma} \} \quad (p \in \mathbb{R}^N).
$$

Then, it holds that

$$
\tilde{u}^\circ(p) = \min \{ p^\top x - \tilde{u}(x) \mid x \in \tilde{\Gamma} \} = \min \{ p^\top x - u(Ux) \mid x = Uy, \ y \in \Gamma \} = \min \{ p^\top y - u(Uy) \mid y \in \Gamma \} = \min \{ (U^\top p)^\top y - u(y) \mid y \in \Gamma \} = u^\circ(Up).
$$

This equation implies that the function $-u^\circ$ is polyhedral generalized L^\natural-convex if and only if $-\tilde{u}^\circ$ is polyhedral L^\natural-convex. Hence, the claim follows from Proposition 6.11.

We can now prove Theorems 3.7 and 4.5.

Proof of Theorem 3.7. Consider a value function $u : \Gamma \to \mathbb{R}$ defined on a finite integer interval Γ and its indirect utility function $V : \mathbb{R}^N \to \mathbb{R}$. It holds that

$$
V(p) = \max \{ u(x) - p^\top x \mid x \in \Gamma \} = -\min \{ p^\top x - u(x) \mid x \in \Gamma \} = -u^\circ(p) \quad (p \in \mathbb{R}^N),
$$

where u° is given by (6.15). Hence, Theorem 3.7 follows immediately from Proposition 6.14.

Proof of Theorem 4.5. Since the Lyapunov function L is given as $L(p) = \sum_{i \in B} V_i(p) + p^\top \omega$, the statement of the theorem follows from Theorem 3.7 and Proposition 6.13.
6.4. Proof of Theorem 4.6

6.4.1. Useful properties

We present several properties which will be used in the proof of Theorem 4.6. For a convex function \(g : \mathbb{R}^N \to \mathbb{R} \) and \(p \in \mathbb{R}^N \), the subdifferential \(\partial g(p) \) of \(g \) at \(p \) is defined by

\[
\partial g(p) = \{ x \in \mathbb{R}^N \mid g(q) - g(p) \geq (q-p)^\top x \ (\forall q \in \mathbb{R}^N) \}.
\]

The next property shows that a subdifferential of the sum of convex functions is given as the Minkowski sum of subdifferentials of convex functions.

Proposition 6.15 ([41, Theorem 23.8]). Let \(g_i : \mathbb{R}^N \to \mathbb{R} \ (i = 1, 2, \ldots, m) \) be convex functions, and define \(g = \sum_{i=1}^m g_i \). For \(p \in \mathbb{R}^N \), it holds that

\[
\partial g(p) = \partial g_1(p) + \partial g_2(p) + \cdots + \partial g_m(p) = \{ \sum_{i=1}^m x_i \mid x_i \in \partial g_i(p) \ (i = 1, 2, \ldots, m) \}.\]

For a set \(C \subseteq \mathbb{R}^N \), we denote \(-C = \{ -x \mid x \in C \} \). Recall that \(\text{conv}(C) \) denotes the convex hull of a set \(C \subseteq \mathbb{R}^N \). For a function \(u : \Gamma \to \mathbb{R} \) defined on a finite integer interval \(\Gamma \), its concave closure \(\bar{u} : \text{conv}(\Gamma) \to \mathbb{R} \) is defined as

\[
\bar{u}(x) = \min \{ p^\top x + \alpha \mid p \in \mathbb{R}^N, \ \alpha \in \mathbb{R}, \ p^\top y + \alpha \geq u(y) \ (\forall y \in \Gamma) \} \quad (x \in \text{conv}(\Gamma)). \quad (6.16)
\]

Note that \(\text{conv}(\Gamma) \) is a finite interval and the concave closure \(\bar{u} \) is a concave function (see, e.g., [41]). The right-hand side of (6.16) can be seen as a linear programming problem, and therefore the minimum always exists for \(x \in \text{conv}(\Gamma) \). For \(p \in \mathbb{R}^N \), we denote

\[
D_{\mathbb{R}}(\bar{u}, p) = \arg \max \{ \bar{u}(z) - p^\top z \mid z \in \text{conv}(\Gamma) \}. \quad (6.17)
\]

Note that \(D_{\mathbb{R}}(\bar{u}, p) \) is a convex set.

Proposition 6.16 (cf. [41]). Let \(u : \Gamma \to \mathbb{R} \) be a value function defined on a finite integer interval \(\Gamma \), and \(V : \mathbb{R}^N \to \mathbb{R} \) be its indirect utility function. For \(p \in \mathbb{R}^N \), it holds that

\[
\partial V(p) = -D_{\mathbb{R}}(\bar{u}, p).
\]

We call a set \(Q \subseteq \mathbb{R}^N \) a twisted g-polymatroid if there exists a g-polymatroid \(\hat{Q} \subseteq \mathbb{R}^N \) such that \(Q = \{ Ux \mid x \in \hat{Q} \} \). Hence, every twisted g-polymatroid is a polyhedron; we say that a twisted g-polymatroid is integral if it is an integral polyhedron. From Proposition 6.7 and the relationship between GM-concavity and M*-concavity, we obtain the following property.

Proposition 6.17. Let \(u : \Gamma \to \mathbb{R} \) be a GM-concave function defined on a finite integer interval \(\Gamma \). For every \(p \in \mathbb{R}^N \), the set \(D_{\mathbb{R}}(\bar{u}, p) \) is an integral twisted g-polymatroid such that

\[
D_{\mathbb{R}}(\bar{u}, p) = \text{conv}(D(u, p)).
\]

It is known that the Minkowski sum of (integral) g-polymatroids is an (integral) g-polymatroid [15]. From this fact the following property of twisted g-polymatroids follows.

Proposition 6.18. For twisted g-polymatroids \(Q_1, Q_2, \ldots, Q_m \subseteq \mathbb{R}^N \), their Minkowski sum \(Q_1 + Q_2 + \cdots + Q_m \) is also a twisted g-polymatroid. Moreover, \(Q_1 + Q_2 + \cdots + Q_m \) is integral if each \(Q_i \) is integral.

6.4.2. Proof

Recall that \(\Lambda \subseteq \mathbb{R}^N \) denotes the set of Walrasian equilibrium price vectors. We will show the following property.

Lemma 6.19. Assume that every bidder \(i \in B \) has a GM-concave value function \(u_i \). The set \(\arg \min \{ C(p) \mid p \in \mathbb{R}^N \} \) is a nonempty bounded polyhedron and satisfies \(\arg \min \{ C(p) \mid p \in \mathbb{R}^N \} \subseteq \Lambda \).
Using Lemma 6.19, Theorem 4.6 can be proved as follows. By Lemma 4.2, it holds that \(\Lambda \subseteq \arg\min\{\mathcal{L}(p) \mid p \in \mathbb{R}^N\} \), which, combined with Lemma 6.19, implies that \(\Lambda \) is a nonempty bounded polyhedron satisfying \(\Lambda = \arg\min\{\mathcal{L}(p) \mid p \in \mathbb{R}^N\} \). Since the Lyapunov function \(\mathcal{L} \) is a polyhedral generalized \(L^2 \)-convex function by Theorem 4.5, the set \(\Lambda = \arg\min\{\mathcal{L}(p) \mid p \in \mathbb{R}^N\} \) satisfies the following property:

\[
(p - \lambda 1) \lor_g q \in \Lambda, \ p \land_g (q + \lambda 1) \in \Lambda \quad (\forall p, q \in \Lambda, \ \forall \lambda \in \mathbb{R}_+),
\]

i.e., the set \(\Lambda \) is a generalized \(L^2 \)-convex set. Since every compact generalized \(L^2 \)-convex set contains unique minimal and maximal vectors with respect to the order \(\leq_g \) (see Section 4), the claim (i) of Theorem 4.6 holds. The claim (ii) of Theorem 4.6 follows from the claim (i) and the latter part of Theorem 4.5.

We now give a proof of Lemma 6.19. We first show that \(\arg\min\{\mathcal{L}(p) \mid p \in \mathbb{R}^N\} \) is a nonempty bounded polyhedron. Denote \(\Phi^i = \max\{|u^i(x)| \mid x \in \Omega\} \) for \(i \in B \) and \(\Phi = \max_{i \in B} \Phi^i \).

Lemma 6.20. Let \(p \in \mathbb{R}^N \).

(i) If \(p_h > 2\Phi \) holds for some \(h \in N \), then the vector \(p' \in \mathbb{R}^N \) given by

\[
p'_j = \begin{cases} p_j & (j \in N \setminus \{h\}), \\ 2\Phi & (j = h) \end{cases}
\]

satisfies \(\mathcal{L}(p') < \mathcal{L}(p) \).

(ii) If \(p_h < -2\Phi \) holds for some \(h \in N \), then the vector \(p'' \in \mathbb{R}^N \) given by

\[
p''_j = \begin{cases} p_j & (j \in N \setminus \{h\}), \\ -2\Phi & (j = h) \end{cases}
\]

satisfies \(\mathcal{L}(p'') < \mathcal{L}(p) \).

Proof. We prove (ii) only since (i) can be shown similarly. For \(i \in B \) and \(x \in \Omega \) with \(x_h < \omega_h \), we have

\[
[u^i(x) - p^Tx] - [u^i(x + \chi_h) - p^T(x + \chi_h)] = u^i(x) - u^i(x + \chi_h) + p_h \\
\leq 2\Phi^i - 2\Phi \leq 0.
\]

This implies that the value \(u^i(x) - p^Tx \) is maximized by a vector \(x \) with \(x_h = \omega_h \), i.e.,

\[
V^i(p) = \max\{u^i(x) - p^Tx \mid x \in \Omega, \ x_h = \omega_h\}.
\]

Similarly, we have

\[
V^i(p'') = \max\{u^i(x) - (p'')^Tx \mid x \in \Omega, \ x_h = \omega_h\}.
\]

Hence, it holds that

\[
V^i(p) = \max\{u^i(x) - p^Tx \mid x \in \Omega, \ x_h = \omega_h\} \\
= \max\{u^i(x) - (p'')^Tx - (p_h + 2\Phi)\omega_h \mid x \in \Omega, \ x_h = \omega_h\} \\
= V^i(p'') - (p_h + 2\Phi)\omega_h
\]
for all \(i \in B \). This equation implies that
\[
\mathcal{L}(p) - \mathcal{L}(p'') = \left(\sum_{i \in B} V_i(p) + p^\top \omega \right) - \left(\sum_{i \in B} V_i(p'') + (p'')^\top \omega \right)
= \sum_{i \in B} (V_i(p) - V_i(p'')) + (p - p'')^\top \omega
= -|B|(p_h + 2\Phi)\omega_h + (p_h + 2\Phi)\omega_h > 0,
\]
where the strict inequality follows from \(p_h < -2\Phi \) and \(|B| > 1\). \(\square \)

From Lemma 6.20 follows that
\[
\arg\min\{\mathcal{L}(p) \mid p \in \mathbb{R}^N\} = \arg\min\{\mathcal{L}(p) \mid p \in \mathbb{R}^N, |p_h| \leq 2\Phi \ (\forall h \in N)\},
\]
where the set in the right-hand side is a nonempty bounded polyhedron since it is the set of minimizers of a polyhedral convex function in a bounded region (see, e.g., [41]). Hence, the first statement of Lemma 6.19 follows.

We now prove \(\arg\min\{\mathcal{L}(p) \mid p \in \mathbb{R}^N\} \subseteq \Lambda \). For this, we show that for every minimizer \(p^* \in \mathbb{R}^N \) of \(\mathcal{L} \), there exists a set of vectors \(z^i \in \Omega \ (i \in B) \) such that
\[
z^i \in D^i(p^*) \quad (i \in B), \quad \sum_{i \in B} z^i = \omega, \quad (6.18)
\]
i.e., \((p^*, (z^i \mid i \in B)) \) is a Walrasian equilibrium.

Since \(\mathcal{L} \) is a convex function and \(p^* \) is a minimizer of \(\mathcal{L} \), the subdifferential of \(\mathcal{L} \) at \(p^* \) contains the zero vector, i.e., \(0 \in \partial \mathcal{L}(p^*) \). By the definition of the Lyapunov function and Propositions 6.15 and 6.16, it holds that
\[
\partial \mathcal{L}(p^*) = \sum_{i \in B} \partial V_i(p^*) + \{\omega\} = -\sum_{i \in B} D_\mathbb{R}(\bar{u}^i, p^*) + \{\omega\},
\]
where the summation means the Minkowski sum. By Proposition 6.17, we have \(D_\mathbb{R}(\bar{u}^i, p) = \text{conv}(D^i(p)) \) and \(D^i(p^*) = D_\mathbb{R}(\bar{u}^i, p) \cap \mathbb{Z}^N \) for \(i \in B \). Hence, it follows that
\[
\partial \mathcal{L}(p^*) \cap \mathbb{Z}^N = \left(-\sum_{i \in B} D_\mathbb{R}(\bar{u}^i, p) + \{\omega\} \right) \cap \mathbb{Z}^N
= -\sum_{i \in B} (D_\mathbb{R}(\bar{u}^i, p) \cap \mathbb{Z}^N) + \{\omega\} = -\sum_{i \in B} D^i(p^*) + \{\omega\},
\]
where the second equality is by Proposition 6.18. This equation and \(0 \in \partial \mathcal{L}(p^*) \) imply the existence of a set of vectors \(z^i \in \Omega \ (i \in B) \) satisfying (6.18).

6.5. Proofs of Theorems 5.2 and 5.3

We prove Theorems 5.2 and 5.3 concerning the validity of price adjustment process. These theorems can be shown by the results in Kolmogorov and Shioura [25], where we use the observation that the process can be seen as an algorithm for minimizing the Lyapunov function \(\mathcal{L} \) which is integral polyhedral generalized \(L^2 \)-convex by Theorem 4.5. Instead, we give below more elementary proofs of Theorems 5.2 and 5.3. Our proof is based on the generalized submodularity of the Lyapunov function \(\mathcal{L} \), which follows from the generalized \(L^2 \)-convexity of \(\mathcal{L} \) shown in Theorem 4.5.
Define an \(n \)-dimensional cube by
\[
\square = \{ d \in \mathbb{R}^N \mid 0 \leq d_k \leq 1, \forall k \in S_1, \ -1 \leq d_l \leq 0, \forall l \in S_2 \}.
\]
Note that \(\square \mathbb{Z} = \square \cap \mathbb{Z}^N \). Consider the problem:
\[
\max_{\bar{d} \in \square} \{ \mathcal{L}(p(t)) - \mathcal{L}(p(t) + \bar{d}) \}. \tag{6.19}
\]
The following result shows that the set of solutions to the problem (6.19) is a generalized \(L^3 \)-convex set and both its minimal and maximal elements are integral.

Lemma 6.21. Assume that every bidder \(i \in B \) has an integer-valued \(GM \)-concave value function. Then the set of solutions to the problem (6.19) is a nonempty generalized \(L^3 \)-convex set and both its minimal and maximal elements are integer vectors.

Proof. The proof is similar to that of Theorem 4.6. The set of solutions to the problem (6.19) is given as
\[
\arg \max_{\bar{d} \in \square} \{ \mathcal{L}(p(t)) - \mathcal{L}(p(t) + \bar{d}) \} = \arg \min_{\bar{d} \in \square} g(d),
\]
where \(g(d) = \mathcal{L}(p(t) + \bar{d}) \ (d \in \square) \). Since the Lyapunov function \(\mathcal{L} \) is an integral polyhedral generalized \(L^3 \)-convex function by Theorem 4.5, the function \(g \) is also an integral polyhedral generalized \(L^2 \)-convex function. Hence, the set \(\arg \min_{\bar{d} \in \square} g(d) \) a nonempty generalized \(L^2 \)-convex set that is an integral polyhedron, and both its minimal and maximal elements are integer vectors.

This lemma implies, in particular, that the problem (6.19) has an integral optimal solution, i.e.,
\[
\max_{\bar{d} \in \square} \{ \mathcal{L}(p(t)) - \mathcal{L}(p(t) + \bar{d}) \} = \max_{\bar{d} \in \square \mathbb{Z}} \{ \mathcal{L}(p(t)) - \mathcal{L}(p(t) + \bar{d}) \}. \tag{6.20}
\]

Proof of Theorem 5.2. Theorem 4.6 shows that the market has a Walrasian equilibrium and an integral vector is a minimizer of the Lyapunov function \(\mathcal{L} \) if and only if it is an equilibrium price vector. Since the prices and value functions take only integer values, the Lyapunov function takes integer values and lowers by a positive integer value in each round of the adjustment process. Moreover, the minimum value of the Lyapunov function is finite. This guarantees that the auction terminates in finitely many rounds, i.e., \(\mathcal{L}(p(t^*) + d(t^*)) = \mathcal{L}(p(t^*)) \) in Step 3 for some \(t^* \in \mathbb{Z}_+ \). Let \(p(0), p(1), \ldots, p(t^*) \) be the generated finite sequence of price vectors. Let \(\bar{t} \in \mathbb{Z}_+ \) be the time when the adjustment process finds \(d(\bar{t}) \in \square \mathbb{Z} \) with \(\mathcal{L}(p(\bar{t}) + d(\bar{t})) = \mathcal{L}(p(\bar{t}) \) at Step 2. In the following, we conclude the proof by showing that the vector \(p(t^*) \) is a minimizer of the Lyapunov function.

We claim that
\[
\begin{align*}
\mathcal{L}(p) & \geq \mathcal{L}(p(\bar{t})) \quad (\forall p \in \mathbb{Z}^N \text{ with } p \geq_g p(\bar{t})), \tag{6.21} \\
\mathcal{L}(p) & \geq \mathcal{L}(p(t^*)) \quad (\forall p \in \mathbb{Z}^N \text{ with } p \leq_g p(t^*)). \tag{6.22}
\end{align*}
\]
Since the proofs are quite similar, we prove the inequality (6.21) only. Suppose, to the contrary, that there exists some \(p \geq_g p(\bar{t}) \) such that \(\mathcal{L}(p) < \mathcal{L}(p(\bar{t})) \). The convexity of function \(\mathcal{L} \) implies that there is a strict convex combination \(p' \) of \(p \) and \(p(\bar{t}) \) such that \(p' \in p(\bar{t}) + \square \) and \(\mathcal{L}(p') < \mathcal{L}(p(\bar{t})) \). By the equation (6.20) and the choice of \(d(\bar{t}) \in \square \mathbb{Z} \) at Step 2, we have
\[
\mathcal{L}(p(\bar{t}) + d(\bar{t})) = \min_{\bar{d} \in \square} \mathcal{L}(p(\bar{t}) + d) = \min_{\bar{d} \in \square} \mathcal{L}(p(\bar{t}) + d) \leq \mathcal{L}(p') < \mathcal{L}(p(\bar{t})),
\]

implying that $L(p(\bar{t}) + d(\bar{t})) < L(p(\bar{t}))$, which is a contradiction.

By (6.21), we have $L(p \lor_g p(\bar{t})) \geq L(p(\bar{t}))$ for all $p \in \mathbb{Z}^N$ since $p \lor_g p(\bar{t}) \geq_g p(\bar{t})$. We will further show that

$$L(p \lor_g p(t)) \geq L(p(t)) \quad (\forall t = \bar{t} + 1, \bar{t} + 2, \ldots, t^* - 1, t^*, \forall p \in \mathbb{Z}^N). \quad (6.23)$$

By induction, it is sufficient to prove the case of $t = \bar{t} + 1$. Notice that $p(\bar{t} + 1) = p(\bar{t}) + d(\bar{t})$, where $d(\bar{t}) \in -\square_\mathbb{Z}$ is determined in Step 3 of the adjustment process. Assume, to the contrary, that there is some $p \in \mathbb{Z}^N$ such that $L(p \lor_g p(\bar{t} + 1)) < L(p(\bar{t} + 1))$. Then if we start the adjustment process from $p(\bar{t} + 1)$, we can by the same previous argument find a nonzero $\bar{d} \in \square_\mathbb{Z}$ such that $L(p(\bar{t} + 1) + \bar{d}) < L(p(\bar{t} + 1))$. Since L is a generalized submodular function, we have

$$L(p(\bar{t}) \lor_g (p(\bar{t} + 1) + \bar{d})) + L(p(\bar{t}) \land_g (p(\bar{t} + 1) + \bar{d})) \leq L(p(\bar{t})) + L(p(\bar{t} + 1) + \bar{d}). \quad (6.24)$$

Since $p(\bar{t}) \lor_g (p(\bar{t} + 1) + \bar{d}) \geq_g p(\bar{t})$, we have $L(p(\bar{t}) \lor_g (p(\bar{t} + 1) + \bar{d})) \geq L(p(\bar{t}))$ by the induction hypothesis, which, together with (6.24), implies that

$$L(p(\bar{t}) \land_g (p(\bar{t} + 1) + \bar{d})) \leq L(p(\bar{t} + 1) + \bar{d}) < L(p(\bar{t} + 1)).$$

Observe that

$$p(\bar{t}) \land_g (p(\bar{t} + 1) + \bar{d}) = p(\bar{t}) \land_g (p(\bar{t}) + d(\bar{t}) + \bar{d}) = p(\bar{t}) + d',$$

where $d' = 0 \land_g (d(\bar{t}) + \bar{d}) \in -\square_\mathbb{Z}$. This yields $L(p(\bar{t}) + d') < L(p(\bar{t}) + d(\bar{t}))$, contradicting the choice of $d(\bar{t})$ since $L(p(\bar{t}) + d(\bar{t})) = \min_{d \in -\square_\mathbb{Z}} L(p(\bar{t}) + d)$.

We finally show that for all $p \in \mathbb{Z}^N$, $L(p(t^*)) \leq L(p)$ holds. By (6.22), we have $L(p \land_g p(t^*)) \geq L(p(t^*))$ since $p \land_g p(t^*) \leq_g p(t^*)$. We also have $L(p \lor_g p(t^*)) \geq L(p(t^*))$ by (6.23). Since L is a generalized submodular function, we have

$$L(p) + L(p(t^*)) \geq L(p \lor_g p(t^*)) \geq L(p \land_g p(t^*)) \geq 2L(p(t^*)),$$

implying that $L(p(t^*)) \leq L(p)$. Hence, we see that $p(t^*)$ is a minimizer of the Lyapunov function L. \hfill \Box

Proof of Theorem 5.3. The price adjustment process considered in Theorem 5.3 is a special case of the one in Theorem 5.2, the termination of the process in a finite number of rounds follows from Theorem 5.2.

Let $\{p(t) \mid t = 0, 1, \ldots, \bar{t}\}$ be the sequence of price vectors generated by the iterations in Step 2 of the process. In the following we will show that $p(\bar{t}) = p$. This means that $p(t)$ is equal to p at the end of Step 2. This fact implies that $L(p(\bar{t}) + d(\bar{t})) = L(p(\bar{t}))$ at the beginning of Step 3 since p is a minimizer of the Lyapunov function. Hence, Step 3 stops immediately without updating the price vector, i.e., p is the final price vector.

We now prove $p(\bar{t}) = p$. Note that for $t = 0, 1, \ldots, \bar{t} - 1$, the vector $p(t + 1)$ is an integer vector with $p(t) \leq_g p(t + 1)$ and $p(t) \neq p(t + 1)$. We also have

$$\min_{d \in -\square_\mathbb{Z}} L(p(\bar{t}) + d) = L(p(\bar{t})). \quad (6.25)$$

We claim that $p(t) \leq_g p$ holds for $t = 0, 1, \ldots, \bar{t}$. Proof is done by induction on t. Suppose that $p(t) \leq_g p$ holds for some $t < \bar{t}$. Then, we have

$$p(t) \leq_g p(t + 1) \land_g p \leq_g p(t + 1). \quad (6.26)$$

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Since \mathcal{L} is a generalized submodular function, we have

$$\mathcal{L}(p(t + 1) \lor_g p) + \mathcal{L}(p(t + 1) \land_g p) \leq \mathcal{L}(p(t + 1)) + \mathcal{L}(p). \tag{6.27}$$

Recall that p is a minimizer of \mathcal{L} by Theorem 4.6. Hence, we have

$$\mathcal{L}(p) \leq \mathcal{L}(p(t + 1) \lor_g p). \tag{6.28}$$

From (6.27) and (6.28) follows that $\mathcal{L}(p(t + 1) \land_g p) \leq \mathcal{L}(p(t + 1))$. This inequality, (6.26), and the construction of $p(t + 1)$ imply that $\mathcal{L}(p(t + 1) \land_g p) = \mathcal{L}(p(t + 1))$ and therefore $p(t + 1) = p(t + 1) \land_g p$, implying $p(t + 1) \leq_g p$.

By the claim above, we have $p(\bar{t}) \leq_g p$, in particular. Suppose, to the contrary, that $p(\bar{t}) \neq p$. Then, $p(\bar{t})$ is not a minimizer of \mathcal{L} since p is the unique minimal minimizer of \mathcal{L} with respect to the order of \leq_g. Hence, there exists a strict convex combination p' of $p(\bar{t})$ and p such that $p' = p(t + 1) \in \mathcal{L}$ and $\mathcal{L}(p') < \mathcal{L}(p(\bar{t}))$ due to the convexity of \mathcal{L}. On the other hand, (6.20) and (6.25) imply that

$$\mathcal{L}(p') \geq \min_{d \in \mathcal{L}} \mathcal{L}(p(\bar{t}) + d) = \min_{d \in \mathcal{L}} \mathcal{L}(p(t + 1)),$$

a contradiction. Hence, $p(\bar{t}) = p$ holds. \hfill \Box

Acknowledgements

The authors are deeply grateful to Paul Klemperer for his helpful comments and suggestions. The first author is partially supported by JSPS/MEXT KAKENHI Grand Numbers 24500002, 25106503.

References

Gross Substitutes and Complements

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
Akiyoshi Shioura
Department of Social Engineering
Tokyo Institute of Technology
Oh-okayama 2-12-1, Meguro-ku
Tokyo 152-8500, Japan
E-mail: shioura.a.aa@m.titech.ac.jp