QUADRATIC OPTIMIZATION
UNDER SEMI-FIBONACCI CONSTRAINT (II)

Yutaka Kimura
Akita Prefectural University

Seiichi Iwamoto
Emeritus Professor at Kyushu University

(Received March 10, 2016; Revised August 29, 2016)

Abstract It is shown that the Fibonacci sequence is optimal for two quadratic programming problems (maximization and minimization) under semi-Fibonacci constraints. The two conditional (primal) problems have their unconditional (dual) problems. The optimal solution is characterized by the Fibonacci number. Both pairs of primal and dual problems are mutually derived through three methods — dynamic, plus-minus and inequality —.

Keywords: Optimization, quadratic optimization, dualization, semi-Fibonacci constraint

1. Introduction

The Fibonacci sequence \(\{F_n\} \) is defined as the solution to the second-order linear difference equation,

\[
x_{n+2} - x_{n+1} - x_n = 0, \quad x_1 = 1, \quad x_0 = 0.
\]

(1.1)

Table 1: Fibonacci sequence \(\{F_n\} \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>233</td>
<td>377</td>
<td>610</td>
<td>987</td>
</tr>
</tbody>
</table>

“The DA VINCI Code” (2006) shows the following ten-digit number:

\[
1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 1 \quad 3 \quad 2 \quad 1.
\]

(1.2)

The code utilizes the Fibonacci sequence as a mysterious code [8], which is the first eight numbers

\(F_1, \ F_2, \ F_3, \ F_4, \ F_5, \ F_6, \ F_7, \ F_8 \)

in the Fibonacci sequence (Table 1).

Recently the Fibonacci Code is constructed in optimal solutions of a primal problem and its dual problem for a general \(n \)-variable quadratic optimization [11–17, 19, 20, 25], which are Fibonacci complementary duality (FCD) and Fibonacci shift duality (FSD). In the case \(n = 4 \), the Fibonacci Code is right “Da Vinci Code.”

In this paper, we consider, as primal problems, two 8-variable quadratic programming problems under semi-Fibonacci constraints. One is minimization. The other is maximization. It turns out that both the problems have “Da Vinci Code” as optimal points. Moreover, this paper discusses how to derive the dual problems from the primal one. We present three derivation methods — (1) dynamic, (2) plus-minus and (3) inequality —.
In section 2, we introduce two conditional problems under semi-Fibonacci constraints, which are a minimization problem \((P_1)\) and a maximization problem \((P_2)\). These problems have dual (unconditional) problems \((D_1)\) and \((D_2)\), respectively. We show that optimal solutions of both (primal and dual) problems are characterized by the Fibonacci number. In section 3, we derive \((D_1)\) from \((P_1)\) and vice versa, and propose three dualizations: dynamic method, plus-minus method and inequality method. Section 4 specifies three dualizations between \((P_2)\) and \((D_2)\). Though we discuss 8-variable problems, our results are valid for general \(2^n\)-variable ones.

2. Primal and Dual Problems
We consider an 8-variable conditional problem

\[
\begin{align*}
\text{minimize} & \quad y_1^2 + y_2^2 + \cdots + y_8^2 \\
\text{subject to} & \quad (i) \quad y_1 + y_2 = y_3 \quad (\sim \nu_1) \\
& \quad (ii) \quad y_3 + y_4 = y_5 \quad (\sim \nu_2) \\
& \quad (iii) \quad y_5 + y_6 = y_7 \quad (\sim \nu_3) \\
& \quad (iv) \quad y_7 + y_8 = c \quad (\sim \nu_4) \\
& \quad (v) \quad y \in \mathbb{R}^8
\end{align*}
\]

where \(y = (y_1, y_2, \ldots, y_8)\). The sign “\(\sim\)” means a corresponding dual variable for an equality constraint. The primal problem \((P_1)\) has a minimum value \(m_1 = \frac{F_8}{F_9}c^2\) at a minimum point

\[y = (y_1, y_2, \ldots, y_8) = \frac{c}{F_9}(F_1, F_2, \ldots, F_8).\]

In a particular case \(c = F_9\), the minimum point \(y\) is called the “Da Vinci Code” and the minimum value \(m_1\) is \(F_8F_9\).

The following 4-variable unconditional problem

\[
\begin{align*}
\text{Maximize} & \quad -\left[2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2\right] + 2c\nu_4 \\
\text{subject to} & \quad (i) \quad (\nu_1, \nu_2, \nu_3, \nu_4) \in \mathbb{R}^4
\end{align*}
\]

is a dual problem of \((P_1)\). This has a maximum value \(M_1 = \frac{F_8}{F_9}c^2\) at a maximum point

\[\nu = (\nu_1, \nu_2, \nu_3, \nu_4) = \frac{c}{F_9}(F_2, F_4, F_6, F_8).\]

Next let us consider an 8-variable conditional problem

\[
\begin{align*}
\text{Maximize} & \quad -(\mu_1^2 + \mu_2^2 + \mu_3^2 + \mu_4^2 + \mu_5^2 + \mu_6^2 + \mu_7^2 + \mu_8^2) + 2c\mu_8 \\
\text{subject to} & \quad (i) \quad \mu_1 = \mu_2 \quad (\sim x_1) \\
& \quad (ii) \quad \mu_2 + \mu_3 = \mu_4 \quad (\sim x_2) \\
& \quad (iii) \quad \mu_4 + \mu_5 = \mu_6 \quad (\sim x_3) \\
& \quad (iv) \quad \mu_6 + \mu_7 = \mu_8 \quad (\sim x_4) \\
& \quad (v) \quad \mu \in \mathbb{R}^8
\end{align*}
\]
where $\mu = (\mu_1, \mu_2, \ldots, \mu_8)$. The problem (P_2) has a maximum value $M_2 = \frac{F_8}{F_9} c^2$ at a maximum point

$$\mu = (\mu_1, \mu_2, \ldots, \mu_8) = \frac{c}{F_9} (F_1, F_2, \ldots, F_8).$$

In the case $c = F_9$, the maximum point μ is “Da Vinci Code”, too. Moreover, the maximum value M_2 is $F_8 F_9$. An interesting relation between (P_1) and (P_2) is discussed in [18].

Its dual problem is a 4-variable unconditional problem

$$\text{minimize } x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2$$

subject to (i) $x \in R^4$

where $x = (x_1, x_2, x_3, x_4)$. The problem (D_2) has a minimum value $m_2 = \frac{F_8}{F_9} c^2$ at a minimum point

$$x = (x_1, x_2, x_3, x_4) = \frac{c}{F_9} (F_1, F_3, F_5, F_7).$$

3. Derivation $(P_1) \iff (D_1)$

Now we show that an 8-variable conditional problem

$$\text{minimize } y_1^2 + y_2^2 + \cdots + y_8^2$$

subject to (i) $y_1 + y_2 = y_3$ (\sim \nu_1)$

(ii) $y_3 + y_4 = y_5$ (\sim \nu_2)

(iii) $y_5 + y_6 = y_7$ (\sim \nu_3)

(iv) $y_7 + y_8 = c$ (\sim \nu_4)

(v) $y \in R^8$

is equivalent to a 4-variable unconditional problem:

$$\text{Maximize } -[2 \nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2] + 2 c \nu_4$$

subject to (i) $(\nu_1, \nu_2, \nu_3, \nu_4) \in R^4$

are dual to each other. We note that the objective function of (P_1) is

$$y_1^2 + y_2^2 + \cdots + y_8^2 = y_1^2 + (y_3 - y_1)^2 + y_2^2 + (y_5 - y_3)^2 + y_3^2 + (y_7 - y_5)^2 + y_4^2 + (c - y_7)^2.$$

Thus the conditional problem (P_1) is equivalent to a 4-variable unconditional problem:

$$\text{minimize } y_1^2 + (y_3 - y_1)^2 + y_2^2 + (y_5 - y_3)^2 + y_3^2 + (y_7 - y_5)^2 + y_4^2 + (c - y_7)^2$$

subject to (i) $(y_1, y_3, y_5, y_7) \in R^4$.

A two-way derivation is presented by three methods — (1) dynamic, (2) plus-minus and (3) inequality —.
3.1. Dynamic method

This method is basically an expansion of the Lagrangian method for constraint optimization. The dynamic method is applicable to unconstrained optimization [13]. The method for constraint is reduced to the Lagrangian one.

Let \(\nu_1, \ldots, \nu_4 \) be a dual variables corresponding to constraints (i), \ldots, (iv) in (P_1), respectively. Let \(y = (y_1, y_2, \ldots, y_8) \in R^8 \) be any feasible solution to (P_1). Then we have

for any \(\nu = (\nu_1, \nu_2, \nu_3, \nu_4) \in R^4 \)

\[
y^2_1 + y^2_2 + \cdots + y^2_8 \\
= y^2_1 + y^2_2 + \cdots + y^2_8 + 2\nu_1(y_3 - y_1 - y_2) + 2\nu_2(y_5 - y_3 - y_4) + 2\nu_3(y_7 - y_5 - y_6) \\
\quad + 2\nu_4(c - y_7 - y_8) \\
= y^2_1 - 2\nu_1y_1 + y^2_2 - 2\nu_1y_2 + y^2_3 - 2(\nu_2 - \nu_1)y_3 + y^2_4 - 2\nu_2y_4 \\
\quad + y^2_5 - 2(\nu_3 - \nu_2)y_5 + y^2_6 - 2\nu_3y_6 + y^2_7 - 2(\nu_4 - \nu_3)y_7 + y^2_8 - 2\nu_4y_8 + 2c\nu_4 \\
= (y_1 - \nu_1)^2 - \nu^2_1 + (y_2 - \nu_1)^2 - \nu^2_1 + \{y_3 - (\nu_2 - \nu_1)\}^2 - (\nu_2 - \nu_1)^2 \\
\quad + (y_4 - \nu_2)^2 - \nu^2_2 + \{y_5 - (\nu_3 - \nu_2)\}^2 - (\nu_3 - \nu_2)^2 + (y_6 - \nu_3)^2 - \nu^2_3 \\
\quad + \{y_7 - (\nu_4 - \nu_3)\}^2 - (\nu_4 - \nu_3)^2 + (y_8 - \nu_4)^2 - \nu^2_4 + 2c\nu_4 \\
\geq -\left[2\nu^2_1 + (\nu_2 - \nu_1)^2 + \nu^2_2 + (\nu_3 - \nu_2)^2 + \nu^2_3 + (\nu_4 - \nu_3)^2 + \nu^2_4 \right] + 2c\nu_4.
\]

The sign of equality holds iff

\[
y_1 = \nu_1, \quad y_2 = \nu_1 \\
y_3 = \nu_2 - \nu_1, \quad y_4 = \nu_2 \\
y_5 = \nu_3 - \nu_2, \quad y_6 = \nu_3 \\
y_7 = \nu_4 - \nu_3, \quad y_8 = \nu_4
\] (3.1)

hold. Hence we have for \(y \) satisfying (i) \(\sim (iv) \) and \(\nu \)

\[
y^2_1 + y^2_2 + \cdots + y^2_8 \geq -\left[2\nu^2_1 + (\nu_2 - \nu_1)^2 + \nu^2_2 + (\nu_3 - \nu_2)^2 + \nu^2_3 + (\nu_4 - \nu_3)^2 + \nu^2_4 \right] + 2c\nu_4. \quad (3.2)
\]

The sign of equality holds iff (3.1) holds together with (i) \(\sim (iv) \). This system — 12 linear equations in 12 variables — is equivalent to

\[
y_2 = \nu_1, \quad y_4 = \nu_2 \\
y_5 = \nu_3, \quad y_8 = \nu_4 \\
y_1 - y_2 = 0, \quad y_1 + y_2 - y_3 = 0 \\
y_2 + y_3 - y_4 = 0, \quad y_3 + y_4 - y_5 = 0 \\
y_4 + y_5 - y_6 = 0, \quad y_5 + y_6 - y_7 = 0 \\
y_6 + y_7 - y_8 = 0, \quad y_7 + y_8 - c = 0.
\] (3.3)

The system has a unique solution

\[
(y_1, y_2, \ldots, y_8) = \frac{c}{F_9}(F_1, F_2, \ldots, F_8); \\
(\nu_1, \nu_2, \nu_3, \nu_4) = \frac{c}{F_9}(F_2, F_4, F_6, F_8). \quad (3.4)
\]

Copyright © by ORSI. Unauthorized reproduction of this article is prohibited.
Thus (D1) is derived.

Conversely (P1) is derived by tracing the argument back. Let $\nu \in R^4$ be any feasible solution to (D1). For any $y \in R^8$, we have the inequality

$$-\left[2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2\right] + 2c\nu_4$$

$$\leq (y_1 - \nu_1)^2 - \nu_1^2 + (y_2 - \nu_2)^2 - \nu_2^2 + (y_3 - \nu_3)^2 - (\nu_3 - \nu_2)^2 + (y_4 - \nu_4)^2 - (\nu_4 - \nu_3)^2 + (y_5 - \nu_5)^2 - (\nu_5 - \nu_4)^2 + (y_6 - \nu_6)^2 - (\nu_6 - \nu_5)^2 - \nu_3^2$$

$$+ (y_7 - (\nu_4 - \nu_3))^2 - (\nu_4 - \nu_3)^2 + (y_8 - \nu_4)^2 - \nu_4^2 + 2c\nu_4.$$ (3.5)

The sign of equality holds iff (3.1) holds. The right hand side in (3.5) becomes

$$y_1^2 - 2\nu_1y_1 + y_2^2 - 2\nu_1y_2 + y_3^2 - 2\nu_2y_3 + y_4^2 - 2\nu_2y_4$$

$$+ y_5^2 - 2(\nu_3 - \nu_2)y_5 + y_6^2 - 2\nu_3y_6 + y_7^2 - 2(\nu_4 - \nu_3)y_7 + y_8^2 - 2\nu_4y_8 + 2c\nu_4$$

$$= y_1^2 + y_2^2 + \cdots + y_8^2$$

$$+ 2\nu_1(y_3 - y_1 - y_2) + 2\nu_2(y_5 - y_3 - y_4) + 2\nu_3(y_7 - y_5 - y_6) + 2\nu_4(c - y_7 - y_8).$$

In particular, under the condition (i) \sim (iv) we get the equality

$$y_1^2 + y_2^2 + \cdots + y_8^2$$

$$+ 2\nu_1(y_3 - y_1 - y_2) + 2\nu_2(y_5 - y_3 - y_4) + 2\nu_3(y_7 - y_5 - y_6) + 2\nu_4(c - y_7 - y_8)$$

$$= y_1^2 + y_2^2 + \cdots + y_8^2.$$ Hence the inequality (3.2) holds for any ν and y satisfying (i) \sim (iv). The sign of equality holds iff (3.1) holds. The condition (3.1) and (i) \sim (iv) constitute a system (3.3). The system has a unique solution (3.4). Thus (P1) is derived.

3.2. Plus-minus method

This method is based upon Fenchel duality[9]. The plus-minus method is viewed as an application of maximum transform, quasi-linearization, or conjugate function [2–7, 9, 10, 23, 24].

Let $y \in R^8$ be any feasible solution to (P1). For any $\nu \in R^4$, we have the inequality

$$y_1^2 + y_2^2 + \cdots + y_8^2$$

$$= y_1^2 + y_2^2 + \cdots + y_8^2$$

$$- 2\nu_1y_1 - 2\nu_2y_2 - 2(\nu_2 - \nu_1)y_3 - 2\nu_3y_3 - 2(\nu_3 - \nu_2)y_4 - 2(\nu_4 - \nu_3)y_5 - 2\nu_3y_6 - 2(\nu_4 - \nu_3)y_7 - 2\nu_4y_8$$

$$+ 2\nu_1(y_3 - y_1 - y_2) + 2\nu_2(y_5 - y_3 - y_4) + 2\nu_3(y_7 - y_5 - y_6) + 2\nu_4(c - y_7 - y_8)$$

$$= (y_1 - \nu_1)^2 - \nu_1^2 + (y_2 - \nu_1)^2 - \nu_2^2 + (y_3 - (\nu_2 - \nu_1))^2 - (\nu_2 - \nu_1)^2$$

$$+ (y_4 - \nu_2)^2 - \nu_3^2 + (y_5 - (\nu_3 - \nu_2))^2 - (\nu_3 - \nu_2)^2 + (y_6 - \nu_3)^2 - \nu_3^2$$

$$+ (y_7 - (\nu_4 - \nu_3))^2 - (\nu_4 - \nu_3)^2 + (y_8 - \nu_4)^2 - \nu_4^2 + 2c\nu_4$$

$$\geq -\left[2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2\right] + 2c\nu_4.$$ (3.6)

The sign of equality holds iff (3.1) holds. The condition (3.1) and (i) \sim (iv) constitute a system (3.3). The system has a unique solution (3.4). Thus (D1) is derived.

Conversely (P1) is derived. In fact, when the unconditional problem

(D1) \hspace{1cm} \text{Maximize} \hspace{1cm} -\left[2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2\right] + 2c\nu_4 \hspace{1cm} \text{subject to} \hspace{1cm} (i) \hspace{1cm} (\nu_1, \nu_2, \nu_3, \nu_4) \in R^4

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
is given, the conditional problem

\[\begin{align*}
\text{minimize} & \quad y_1^2 + y_2^2 + \cdots + y_8^2 \\
\text{subject to} & \quad (i) \quad y_1 + y_2 = y_3 \quad (\sim \nu_1) \\
& \quad (ii) \quad y_3 + y_4 = y_5 \quad (\sim \nu_2) \\
& \quad (iii) \quad y_5 + y_6 = y_7 \quad (\sim \nu_3) \\
& \quad (iv) \quad y_7 + y_8 = c \quad (\sim \nu_4) \\
& \quad (v) \quad y \in R^8
\end{align*} \]

is derived. To show this, we establish an inequality (3.2) for any \(\nu \) and \(y \) satisfying (i) \(\sim \) (iv), and show that the sign of equality holds iff (3.1) holds.

Now let \(\nu \in R^4 \) be any feasible solution to (D1). Then we have for any \(y \in R^8 \)

\[\begin{align*}
- & \left[2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2 \right] + 2c\nu_4 \\
= & \left[-2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2 \right] + 2c\nu_4 \\
& + 2y_1\nu_1 + 2y_2\nu_1 + 2y_3(\nu_2 - \nu_1) + 2y_4\nu_2 + 2y_5(\nu_3 - \nu_2) + 2y_6\nu_3 + 2y_7(\nu_4 - \nu_3) + 2y_8\nu_4 \\
& - 2y_1\nu_1 - 2y_2\nu_1 - 2y_3(\nu_2 - \nu_1) - 2y_4\nu_2 - 2y_5(\nu_3 - \nu_2) - 2y_6\nu_3 - 2y_7(\nu_4 - \nu_3) - 2y_8\nu_4 \\
= & -(\nu_1 - y_1)^2 + y_1^2 - (\nu_1 - y_2)^2 + y_2^2 - (\nu_2 - \nu_1 - y_3)^2 + y_3^2 \\
& - (\nu_2 - y_4)^2 + y_4^2 - (\nu_3 - \nu_2 - y_5)^2 + y_5^2 - (\nu_4 - y_6)^2 + y_6^2 \\
& - (\nu_4 - \nu_3 - y_7)^2 + y_7^2 - (\nu_1 - y_8)^2 + y_8^2 \\
& - 2(y_1 + y_2 - y_3)\nu_1 - 2(y_3 + y_4 - y_5)\nu_2 - 2(y_5 + y_6 - y_7)\nu_3 - 2(y_7 + y_8 - c)\nu_4.
\end{align*} \]

In particular, under the condition (i) \(\sim \) (iv) we obtain the inequality

\[\begin{align*}
- (\nu_1 - y_1)^2 + y_1^2 - (\nu_1 - y_2)^2 + y_2^2 - (\nu_2 - \nu_1 - y_3)^2 + y_3^2 \\
& - (\nu_3 - \nu_2 - y_5)^2 + y_5^2 - (\nu_4 - y_6)^2 + y_6^2 \\
& - (\nu_4 - \nu_3 - y_7)^2 + y_7^2 - (\nu_1 - y_8)^2 + y_8^2 \\
\leq & \quad y_1^2 + y_2^2 + \cdots + y_8^2.
\end{align*} \]

The sign of equality holds iff (3.1) holds. Hence we have the inequality (3.2) for any \(\nu \) and \(y \) satisfying (i) \(\sim \) (iv). The condition (3.1) and (i) \(\sim \) (iv) constitute a system (3.3). The system has a unique solution (3.4). Thus (P1) is derived.

3.3. Inequality method

By applying an inequality, we show that (P1) and (D1) are dual to each other. Our inequality approach [13] is based upon the elementary inequality with equality condition:

\[2xy \leq x^2 + y^2 \quad \text{on} \quad R^2 \quad ; \quad x = y. \quad (3.6) \]

This is equivalent to Arithmetic-mean/Geometric-mean inequality.

Now let us show a two-way derivation (P1) \(\iff \) (D1). Let \(y = (y_1, y_2, \ldots, y_8) \in R^8 \) be feasible for (P1) and \(\nu = (\nu_1, \nu_2, \nu_3, \nu_4) \in R^4 \) be feasible for (D1). That is, we assume that \(y \) satisfies the constraint (i) \(\sim \) (iv).
By applying the inequality (3.6), we have eight inequalities:
\[
\begin{align*}
2y_1\nu_1 &\leq y_1^2 + \nu_1^2; \quad y_1 = \nu_1 \\
2y_2\nu_1 &\leq y_2^2 + \nu_1^2; \quad y_2 = \nu_1 \\
2y_3(\nu_2 - \nu_1) &\leq y_3^2 + (\nu_2 - \nu_1)^2; \quad y_3 = \nu_2 - \nu_1 \\
2y_4\nu_2 &\leq y_4^2 + \nu_2^2; \quad y_4 = \nu_2 \\
2y_5(\nu_3 - \nu_2) &\leq y_5^2 + (\nu_3 - \nu_2)^2; \quad y_5 = \nu_3 - \nu_2 \\
2y_6\nu_3 &\leq y_6^2 + \nu_3^2; \quad y_6 = \nu_3 \\
2y_7(\nu_4 - \nu_3) &\leq y_7^2 + (\nu_4 - \nu_3)^2; \quad y_7 = \nu_4 - \nu_3 \\
2y_8\nu_4 &\leq y_8^2 + \nu_4^2; \quad y_8 = \nu_4.
\end{align*}
\]

Summing up both sides, we get
\[
2\left[y_1\nu_1 + y_2\nu_1 + y_3(\nu_2 - \nu_1) + y_4\nu_2 + y_5(\nu_3 - \nu_2) + y_6\nu_3 + y_7(\nu_4 - \nu_3) + y_8\nu_4 \right]
\leq \sum_{k=1}^{8} y_k^2 + \left[2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2 \right]
\]
with an equality condition:
\[
\begin{align*}
\text{(e)} & \quad y_1 = \nu_1, \quad y_2 = \nu_1, \quad y_3 = \nu_2 - \nu_1, \quad y_4 = \nu_2, \\
& \quad y_5 = \nu_3 - \nu_2, \quad y_6 = \nu_3, \quad y_7 = \nu_4 - \nu_3, \quad y_8 = \nu_4.
\end{align*}
\]

The condition (i) \sim (iv) implies that
\[
\begin{align*}
y_1\nu_1 + y_2\nu_1 + y_3(\nu_2 - \nu_1) + y_4\nu_2 + y_5(\nu_3 - \nu_2) + y_6\nu_3 + y_7(\nu_4 - \nu_3) + y_8\nu_4 \\
=(y_1 + y_2 - y_3)\nu_1 + (y_3 + y_4 - y_5)\nu_2 + (y_5 + y_6 - y_7)\nu_3 + (y_7 + y_8 - c)\nu_4 + c\nu_4 \\
= c\nu_4.
\end{align*}
\]
Thus we get an inequality
\[
2c\nu_4 \leq \sum_{k=1}^{8} y_k^2 + \left[2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2 \right].
\]
The sign of equality holds iff (e) holds. Hence it holds that
\[
-\left[2\nu_1^2 + (\nu_2 - \nu_1)^2 + \nu_2^2 + (\nu_3 - \nu_2)^2 + \nu_3^2 + (\nu_4 - \nu_3)^2 + \nu_4^2 \right] + 2c\nu_4 \leq y_1^2 + \cdots + y_8^2
\]
for any feasible \(\nu \) and \(y \). The sign of equality holds iff (i) \sim (iv), (e) hold:
\[
\begin{align*}
y_1 = \nu_1, \quad & y_2 = \nu_1 \\
y_3 = \nu_2 - \nu_1, \quad & y_4 = \nu_2 \\
y_5 = \nu_3 - \nu_2, \quad & y_6 = \nu_3 \\
y_7 = \nu_4 - \nu_3, \quad & y_8 = \nu_4 \\
y_1 + y_2 - y_3 = 0, \quad & y_3 + y_4 - y_5 = 0 \\
y_5 + y_6 - y_7 = 0, \quad & y_7 + y_8 - c = 0.
\end{align*}
\]
This system is equivalent to (3.3). The system has a unique solution (3.4). Thus both problems are dual to each other.
4. Derivation \((P_2) \iff (D_2)\)

We note that the objective function of \((P_2)\) is

\[
-(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2) + 2c\mu_8
\]

\[
= -\left[2\mu_2^2 + (\mu_4 - \mu_2)^2 + \mu_4^2 + (\mu_6 - \mu_4)^2 + \mu_6^2 + (\mu_8 - \mu_6)^2 + \mu_8^2 \right] + 2c\mu_8.
\]

Thus the 8-variable conditional problem \((P_2)\) is equivalent to a 4-variable unconditional problem:

Maximize \[- \left[2\mu_2^2 + (\mu_4 - \mu_2)^2 + \mu_4^2 + (\mu_6 - \mu_4)^2\right.\]

\[\left. + \mu_6^2 + (\mu_8 - \mu_6)^2 + \mu_8^2 \right] + 2c\mu_8\]

subject to \((i) (\mu_2, \mu_4, \mu_6, \mu_8) \in \mathbb{R}^4\).

4.1. Dynamic method

Next we show that a dual problem of the (primal) maximization problem \((P_2)\) is a minimization problem \((D_2)\). Let \(\mu = (\mu_1, \mu_2, \ldots, \mu_8) \in \mathbb{R}^8\) be any feasible solution to \((P_2)\).

For any \(x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4\), we get the inequality

\[
-(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2) + 2c\mu_8
\]

\[
= -(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2) + 2c\mu_8
\]

\[+ 2x_1(\mu_1 - \mu_2) + 2x_2(\mu_2 + \mu_3 - \mu_4) + 2x_3(\mu_4 + \mu_5 - \mu_6) + 2x_4(\mu_6 + \mu_7 - \mu_8)
\]

\[
= -\mu_1^2 + 2x_1\mu_1 - \mu_2^2 + 2(x_2 - x_1)\mu_2 - \mu_3^2 + 2x_2\mu_3 - \mu_4^2 + 2(x_3 - x_2)\mu_4
\]

\[+ \mu_5^2 + 2x_3\mu_5 - \mu_6^2 + 2(x_4 - x_3)\mu_6 - \mu_7^2 + 2x_4\mu_7 - \mu_8^2 + 2(c - x_4)\mu_8
\]

\[
= -(\mu_1 - x_1)^2 + x_1^2 - (\mu_2 - (x_2 - x_1))^2 + (x_2 - x_1)^2
\]

\[+ (\mu_3 - x_2)^2 + x_2^2 - (\mu_4 - (x_3 - x_2))^2 + (x_3 - x_2)^2
\]

\[+ (\mu_5 - x_3)^2 + x_3^2 - (\mu_6 - (x_4 - x_3))^2 + (x_4 - x_3)^2
\]

\[+ (\mu_7 - x_4)^2 + x_4^2 - (\mu_8 - (c - x_4))^2 + (c - x_4)^2
\]

\[
\leq x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2.
\]

The sign of equality holds iff

\[
\begin{align*}
\mu_1 &= x_1, & \mu_2 &= x_2 - x_1 \\
\mu_3 &= x_2, & \mu_4 &= x_3 - x_2 \\
\mu_5 &= x_3, & \mu_6 &= x_4 - x_3 \\
\mu_7 &= x_4, & \mu_8 &= c - x_4
\end{align*}
\]

(4.1)

hold.

Hence we have for \(\mu\) satisfying \((i) \sim (iv)\) and \(x\)

\[-(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2) + 2c\mu_8 \leq x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2.
\]

(4.2)
The sign of equality holds iff (4.1) holds together with (i) \(\sim \) (iv). This system — 12 linear equations in 12 variables — is equivalent to

\[
\begin{align*}
\mu_1 &= x_1, & \mu_3 &= x_2 \\
\mu_5 &= x_3, & \mu_7 &= x_4 \\
\mu_1 - \mu_2 &= 0, & \mu_1 + \mu_2 - \mu_3 &= 0 \\
\mu_2 + \mu_3 - \mu_4 &= 0, & \mu_3 + \mu_4 - \mu_5 &= 0 \\
\mu_4 + \mu_5 - \mu_6 &= 0, & \mu_5 + \mu_6 - \mu_7 &= 0 \\
\mu_6 + \mu_7 - \mu_8 &= 0, & \mu_7 + \mu_8 - c &= 0.
\end{align*}
\]

Thus (D2) is derived.

Conversely (P2) is derived by tracing the argument back. Let \(x \in \mathbb{R}^4 \) be any feasible solution to (D2). For any \(\mu \in \mathbb{R}^8 \), we get the inequality

\[
x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2 \\
\geq -(\mu_1 - x_1)^2 + x_1^2 - \{\mu_2 - (x_2 - x_1)\}^2 + (x_2 - x_1)^2 \\
- (\mu_3 - x_2)^2 + x_2^2 - \{\mu_4 - (x_3 - x_2)\}^2 + (x_3 - x_2)^2 \\
- (\mu_5 - x_3)^2 + x_3^2 - \{\mu_6 - (x_4 - x_3)\}^2 + (x_4 - x_3)^2 \\
- (\mu_7 - x_4)^2 + x_4^2 - \{\mu_8 - (c - x_4)\}^2 + (c - x_4)^2.
\]

The sign of equality holds iff (4.1) holds. Moreover, the right hand side in (4.5) becomes

\[
-(\mu_1 - x_1)^2 + x_1^2 - \{\mu_2 - (x_2 - x_1)\}^2 + (x_2 - x_1)^2 - \cdots - \{\mu_8 - (c - x_4)\}^2 + (c - x_4)^2 \\
= -\left(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2\right) + 2c\mu_8 \\
+ 2x_1(\mu_1 - \mu_2) + 2x_2(\mu_2 + \mu_3 - \mu_4) + 2x_3(\mu_4 + \mu_5 - \mu_6) + 2x_4(\mu_6 + \mu_7 - \mu_8).
\]

Under the condition (i) \(\sim \) (iv) we obtain

\[
-(\mu_1 - x_1)^2 + x_1^2 - \{\mu_2 - (x_2 - x_1)\}^2 + (x_2 - x_1)^2 - \cdots - \{\mu_8 - (c - x_4)\}^2 + (c - x_4)^2 \\
= -\left(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2\right) + 2c\mu_8.
\]

Hence the inequality (4.2) holds for any \(x \) and \(\mu \) satisfying (i) \(\sim \) (iv). The sign of equality holds iff (4.1) holds. The condition (4.1) and (i) \(\sim \) (iv) constitute a system (4.3). The system has a unique solution (4.4). Thus (P2) is derived.
4.2. Plus-minus method

Let $\mu \in R^8$ be any feasible solution to (P$_2$). Then we have for any $x \in R^4$

\[-(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2) + 2c\mu_8\]

\[= -(\mu_2^2 + \mu_3^2 + \cdots + \mu_8^2) + 2c\mu_8\]

\[+ 2x_1\mu_1 + 2x_2\mu_2 + 2x_3\mu_3 + 2x_4\mu_4 - 2x_1\mu_1 - 2x_2\mu_2 - 2x_3\mu_3 - 2x_4\mu_4\]

\[= -(\mu_1 - x_1)^2 + x_1^2 - \{\mu_2 - (x_2 - x_1)\}^2 + (x_2 - x_1)^2\]

\[-(\mu_3 - x_2)^2 + x_2^2 - \{\mu_4 - (x_3 - x_2)\}^2 + (x_3 - x_2)^2\]

\[-(\mu_5 - x_3)^2 + x_3^2 - \{\mu_6 - (x_4 - x_3)\}^2 + (x_4 - x_3)^2\]

\[-(\mu_7 - x_4)^2 + x_4^2 - \{\mu_8 - (c - x_4)\}^2 + (c - x_4)^2\]

\[\leq x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2.\]

The sign of equality holds iff the condition (4.1) holds. The condition (4.1) and (i) ~ (iv) constitute a system (4.3). The system has a unique solution (4.4). Thus (D$_2$) is derived.

Conversely (P$_2$) is derived. When the unconditional problem (D$_2$) is given, the conditional problem (P$_2$) is derived. To show this, we establish an inequality (4.2) for any x and μ satisfying (i) ~ (iv), and show that the sign of equality holds iff (4.1) holds.

Let $x \in R^4$ be any feasible solution to the minimization problem (D$_2$). Then we have for any $\mu \in R^8$

\[x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2\]

\[= x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2\]

\[-2\mu_1x_1 - 2\mu_2(x_2 - x_1) - 2\mu_3x_2 - 2\mu_4(x_3 - x_2)\]

\[-2\mu_5x_3 - 2\mu_6(x_4 - x_3) - 2\mu_7x_4 - 2\mu_8(c - x_4)\]

\[+ 2\mu_1x_1 + 2\mu_2(x_2 - x_1) + 2\mu_3x_2 - 2\mu_4(x_3 - x_2)\]

\[+ 2\mu_5x_3 + 2\mu_6(x_4 - x_3) + 2\mu_7x_4 + 2\mu_8(c - x_4)\]

\[= (x_1 - \mu_1)^2 - \mu_1^2 + (x_2 - x_1 - \mu_2)^2 - \mu_2^2\]

\[+ (x_2 - \mu_3)^2 - \mu_3^2 + (x_3 - x_2 - \mu_4)^2 - \mu_4^2\]

\[+ (x_3 - \mu_5)^2 - \mu_5^2 + (x_4 - x_3 - \mu_6)^2 - \mu_6^2\]

\[+ (x_4 - \mu_7)^2 - \mu_7^2 + (c - x_4 - \mu_8)^2 - \mu_8^2\]

\[+ 2(\mu_1 - \mu_2)x_1 + 2(\mu_2 + \mu_3 - \mu_4)x_2 + 2(\mu_4 + \mu_5 - \mu_6)x_3 + 2(\mu_6 + \mu_7 - \mu_8)x_4 + 2c\mu_8.\]

Under the condition (i) ~ (iv) we obtain an inequality

\[x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2\]

\[\geq -(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2) + 2c\mu_8\]

for any x and μ satisfying (i) ~ (iv). The sign of equality holds iff (4.1) holds. The condition (4.1) and (i) ~ (iv) constitute a system (4.3). The system has a unique solution (4.4). Thus (P$_2$) is derived.

4.3. Inequality method

By applying the Arithmetic-mean/Geometric-mean inequality (3.6), we show that (P$_2$) and (D$_2$) are dual to each other.
Now let us show a two-way derivation \((P_2) \iff (D_2)\). Let \(\mu = (\mu_1, \mu_2, \ldots, \mu_8) \in \mathbb{R}^8\) be feasible for \((P_2)\) and \(x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4\) be feasible for \((D_2)\). That is, we assume that \(\mu\) satisfies the constraint \((i) \sim (iv)\).

By applying the inequality \(8\) times and summing over \(k = 1, 2, \ldots, 8\), we have an inequality:

\[
2\left[\mu_1 x_1 + \mu_2 (x_2 - x_1) + \mu_3 x_2 + \mu_4 (x_3 - x_2) + \mu_5 x_3 + \mu_6 (x_4 - x_3) + \mu_7 x_4 + \mu_8 (c - x_4)\right] \\
\leq \sum_{k=1}^{8} \mu_k^2 + \left[x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2 \right]
\]

with an equality condition:

\[
(e') \quad \mu_1 = x_1, \quad \mu_2 = x_2 - x_1, \quad \mu_3 = x_2, \quad \mu_4 = x_3 - x_2, \quad \mu_5 = x_3, \quad \mu_5 = x_4 - x_3, \quad \mu_6 = x_4, \quad \mu_8 = c - x_4.
\]

The condition \((i) \sim (iv)\) implies that

\[
\mu_1 x_1 + \mu_2 (x_2 - x_1) + \mu_3 x_2 + \mu_4 (x_3 - x_2) + \mu_5 x_3 + \mu_6 (x_4 - x_3) + \mu_7 x_4 + \mu_8 (c - x_4) \\
= (\mu_1 - \mu_2) x_1 + (\mu_2 + \mu_3 - \mu_4) x_2 + (\mu_4 + \mu_5 - \mu_6) x_3 + (\mu_6 + \mu_7 - \mu_8) x_4 + c \mu_8
\]

Thus we get an inequality

\[
2c \mu_8 \leq \sum_{i=1}^{8} \mu_i^2 + \left[x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2 \right].
\]

The sign of equality holds iff \((e')\) holds. Hence it holds that

\[-(\mu_1^2 + \mu_2^2 + \cdots + \mu_8^2) + 2c \mu_8 \leq x_1^2 + (x_2 - x_1)^2 + x_2^2 + (x_3 - x_2)^2 + x_3^2 + (x_4 - x_3)^2 + x_4^2 + (c - x_4)^2\]

for any feasible \(\mu\) and \(x\). The sign of equality holds iff \((i) \sim (iv)\), \((e')\) hold:

\[
\mu_1 = x_1, \quad \mu_2 = x_2 - x_1 \quad \mu_3 = x_2, \quad \mu_4 = x_3 - x_2 \quad \mu_5 = x_3, \quad \mu_6 = x_4 - x_3 \quad \mu_7 = x_4, \quad \mu_8 = c - x_4 \\
\mu_1 - \mu_2 = 0, \quad \mu_2 + \mu_3 - \mu_4 = 0 \quad \mu_4 + \mu_5 - \mu_6 = 0, \quad \mu_6 + \mu_7 - \mu_8 = 0.
\]

This system is equivalent to \((4.3)\). The system has a unique solution \((4.4)\). Thus both are dual to each other.

Acknowledgements

The authors would like to thank anonymous referee for careful reading and some useful comments.

Copyright © by ORSI. Unauthorized reproduction of this article is prohibited.
References

Yutaka Kimura
Department of Management Science and Engineering,
Faculty of Systems Science and Technology,
Akita Prefectural University
84-4, Tsuchiya-Ebinokuchi, Yuri-Honjo,
Akita 015-0055, JAPAN
E-mail: yutaka@akita-pu.ac.jp.jp