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Abstract In this paper, we consider the pricing decision of a retailer who experiences peak demand for
a product during a given time interval and wishes to stabilize the demand by adjusting the sales price.
The stabilization of demand brings about desirable outcomes such as a reduction in the need for capacity
investment and improves the production efficiency in the supply chain. We establish a continuous-time
model to analyze the effect of dynamic pricing on peak demand. We find that a closed-form optimal pricing
policy minimizes the difference between the actual demand and target level. It is shown that the dynamic
pricing not only reduces peak demand but also mitigates fluctuations in the peak demand. Using electricity
consumption data as a case study, we show that the proposed pricing policy is effective for reducing the
mean peak demand compared to a constant pricing policy.

Keywords: Stochastic optimization, dynamic pricing, optimal control, demand stabi-
lization

1. Introduction

In this paper, we consider a firm that is selling a non-storable product. The product is sold
to customers, and demand for the product exhibits a peak within a specified time interval.
The firm has the market power to set the price of the product based on the material price,
and to determine the price dynamically so as to mitigate demand fluctuations over the
selling period.

The motivation for our study is the operations of an electricity provider. Fuel is procured
to generate electricity and electricity prices are determined based on the fuel price. The
demand for electricity during afternoon hours in July and August in Japan can be more
than double to the early-morning with low demand. This is described as peak demand.
Providing the infrastructure to supply large quantities of electricity for short periods during
peak demand leads to increased generation and network costs. In addition, this peak may
result in a supply shortage due to the capacity constraints on the electricity generation.
Recently, advances in smart metering technologies have made it possible to track demand
and adjust the pricing level rapidly. Dynamic pricing is one of the mechanisms that could
be used for mitigating the effect of demand uncertainties and dampening peak demand by
allowing consumers to react to the selling price.

Many researchers have focused on the dynamic pricing of electricity in recent years. For
instance, Yousefi et al. [1] and Doostizadeh and Ghasemi [2] provide a day-ahead electricity-
pricing model to maximize retailer’s profits based on the day-ahead energy market prices
while considering demand elasticity and consumers’ benefit. Roozbehani et al. [3] propose to-
tal customer utility minus the supplier’s cost of meeting the electricity demand as a dynamic
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pricing policy that can potentially maximize social welfare. These studies are formulated in
a discrete-time setting and demand stabilization is considered under the objective of profit
maximization. However, the discrete-time method is not sufficiently flexible to increases in
demand at sub-hourly timescales. A sudden increase in demand at sub-hourly timescales
would have undesirable economic consequences and would compromise energy security. For
this reason, demand stabilization methods need to be continuous in time. In this paper, we
propose a continuous-time model to changes in demand, that is, demand uncertainty. We
consider not only stabilizing the demand but also reducing the variance of the selling price.
This is because customers of highly public products are not happy with large fluctuations
in the price. The optimal price is determined in such a way that the demand and the price
are maintained as close to the target demand level and the target price, respectively, as
possible. The target price is based on the material price, and deviations in the demand level
and the price from their target levels are penalized as costs. Thus, we find an optimal price
so as to minimize the total penalty costs. Then we investigate the analytical properties of
a dynamic pricing policy and the effectiveness of the policy for modulating peak demand.

The dynamic pricing model can be formulated in terms of stochastic optimal control the-
ory. Stochastic optimal control theory is widely used in finance, economics, maintenance,
and production planning to solve a variety of problems. In particular, many authors have
adopted it for production planning in manufacturing systems (Bensoussan et al. [4], Sethi
and Thompson [5]). Based on such studies, we model a continuous-time dynamic pricing
problem in terms of stochastic demand, and obtain a closed-form optimal price with the
probability distribution of peak demand determined under the dynamic pricing. By com-
paring our model with a fixed pricing policy, we find that dynamic pricing not only reduces
peak demand but also mitigates fluctuations in peak demand. Furthermore, we numerically
investigate the impact of consumer’s price sensitivity on peak demand.

Our model also has potential applications in other settings. Examples include highly
public products (e.g., water, gas, communication networks, and transportation systems) and
service products (e.g., the peak occurs in the evening in a supermarket and at lunch time in
a restaurant). These industries have the same objective of mitigating demand uncertainty.

The rest of the paper is organized as follows. In Section 2, we present a dynamic
pricing model and then develop an optimal pricing policy in Section 3. In Section 4, we
present numerical results to evaluate the effect of the proposed pricing policy on demand
stabilization. Finally, we discuss our conclusions and future research topics in Section 5.
All omitted proofs are given in the appendix.

2. Dynamic Pricing Model for Demand Stabilization

We consider a finite horizon problem within time interval [0, T ]. At the beginning of the
selling season, the firm procures some commodities from the market. The firm processes
the commodities and sells the resulting product to price-sensitive customers. We assume a
peak demand occurs during [0, T ] when the product sells at a fixed price p0. The peak time
is denoted t̂. The problem faced by the firm is how to determine an optimal pricing policy
so as to stabilize peak demand.

We assume that the demand at time s, Xs, follows a stochastic differential equation
(SDE):

dXs = µ(s)ds+ σ(s)dws, X0 = x, (2.1)

where x is the initial demand at time s = 0, µ(s) is the growth rate at time s, σ(s) is the
volatility, and dwt is the random error following a Wiener process. Since the demand has a
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peak at time t̂, we define the growth rate as

µ(s) =

{
µ1 > 0, if 0 ≤ s < t̂,

µ2 < 0, if t̂ ≤ s ≤ T̄ .
(2.2)

Remark 2.1. For electricity suppliers, demand has the potential to take negative values. For
example, an energy supply from renewable sources exceeding the total demand is equivalent to
a negative demand. However, occurrences of negative demand are rare for products that are
in constant use by many customers (e.g., electricity or communications traffic). Moreover,
these demand dynamics allow us to derive the analytical solution for an optimal pricing
policy, whereas a general form SDE makes the optimal policy analytically intractable. For
this reason, we leave the extension to a more general SDE for future work.

Remark 2.2. We model time-varying demand with a piecewise-linear drift parameter in
Equation (2.2). The selling period is divided into two periods [0, t̂] and [t̂, T ], and the drift
is specified for each sub-period. The low division number would lead to a poor fit of the
demand process for actual data. Although we can improve the fit by increasing the division
number, the calculus of finding the optimal policy becomes more complex. For this reason,
we define the drift parameter with Equation (2.2). Furthermore, the use of a trigonometric
function instead of a constant drift would not only retain continuity of the SDE but also lead
to a more realistic load profile. We also leave this extension for future work.

In order to derive the relation between the demand and selling price, we introduce a
linear price-response function defined by

q(s, ps) = as(ps − p0) + 1, (2.3)

where

as =

{
a1 < 0, if 0 ≤ s < t̂,

a2 = −a1 > 0, if t̂ ≤ s ≤ T̄ .
(2.4)

The value as is a price response factor and can be determined by the elasticity ϵ. That is,
for any s ∈ [0, t̂), we have

ϵ(p0) = −p0∂q(s, p0)/∂ps
q(s, p0)

= −asp0, (2.5)

giving as = a1 = −ϵ/p0. Thus, the more sensitive the customers are to the price, the larger
|as| becomes. Using the function q(·, ·), the demand under dynamic pricing is given by †

dXs = µ(s)q(s, ps)ds+ σ(s)dws. (2.6)

Note that if the price ps is larger than the historical average price p0, the growth rate of the
demand process decreases before the peak. If ps = p0 for all s, then the demand dynamics

†The stochastic part of the demand process in Equation (2.1) accounts for demand increases or decreases
that are random in nature. The mean demand is given by µit, i = 1, 2, and the noise term shifts the
demand randomly about this mean. Although the process governing the demand of a product can depend
on variables other than its price, we focus on the demand process that depends only on current price. In
other words, we assume that the price only affects the mean but not the random fluctuations in the demand.
Thus, the demand process is controlled by changing the growth rate with the price-response function.
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of (2.6) are consistent with (2.1), because q(s, ps) = q(s, p0) = 1. Thus, with the function
q, we can influence the demand by adjusting the selling price ps at time s.

We now define the additional costs incurred by deviating from the target demand level
θ and from the selling target price p̄. ‡ Here, θ > 0 and p̄ > 0 are specified at time 0 and do
not change. The target value θ is determined by the firm on the basis of supply capacity.
In addition, the firm determines the target selling price p̄ based on the commodity price.
Given a demand level x and selling price p, the associated total expected cost is

ψs(p, x) = E

[∫ T

s

{π1(Xu − θ)2 + π2(pu − p̄)2}du
∣∣∣∣ Xs = x

]
, (2.7)

where π1 and π2 are stability factors. Then, our problem is to optimize the pricing policy
by minimizing the function ψs(·, ·):

Ψs(x) = min
p
ψs(p, x), (2.8)

where, at the maturity T , Equation (2.7) can be reduced to ΨT (x) = π1(x − θ)2 as the
boundary condition at T , because the demand is only to be stabilized to within the target
level θ. This type of problem has been studied as a linear quadratic optimal control problem
(Yong and Zhou [7]).

3. Optimal Pricing Policy

The optimal value of Ψs(x) is given by the solution of the Hamilton-Jacobi-Bellman equation
(Fleming and Soner [6]):

0 = max
p

[−π1(x− θ)2 − π2(p− p̄)2 +Aψs(p, x)], (3.1)

where

Aψs(p, x) ≡
∂ψs

∂s
+ µ(s)q(s, p)

∂ψs

∂x
+

1

2
(σ(s))2

∂2ψs

∂x2
(3.2)

and ψT (x) = −π1(x− θ)2.

Theorem 3.1. Let Ws(x) be the solution of Equation (3.1). The minimum of the expected
cost from s to T can be obtained by

Ws(x) = Q(s)x2 +R(s)x+M(s), (3.3)

‡We distinguish between p0 and p̄. Since the price fluctuates, depending on the real-time demand under
the dynamic pricing policy, the customers will be dissatisfied with the price if it is much higher than the
historical average price p0. To obtain the customers’ consent for the dynamic pricing, the seller needs to
seek an appropriate target price p̄ with consideration of the price fluctuations over the entire period. For
this reason, we distinguish the historical average price p̄ from the traditional price p0.
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where g±1 = µ2 ± µ1η, g
±
2 = 1±

√
π1/π2a2µ2,

η =
a1(g

−
2 y2(t̂)− g+2 )

a2(g
−
2 y2(t̂) + g+2 )

, (3.4)

Q(s) =


√
π1π2(g

+
1 y1(s)−g−1 )

a1µ1(g
+
1 y1(s)+g−1 )

, if 0 ≤ s ≤ t̂,
√
π1π2(g

−
2 y2(s)−g+2 )

a2µ2(g
−
2 y2(s)+g+2 )

, if t̂ ≤ s ≤ T ,
(3.5)

R(s) =


2
√

y1(s)

g+1 y1(s)+g−1

[ √
π2

a1µ1
√
π1
{π1θζ−1 (s) +

√
π1π2

a1
q(s, p̄)ζ+1 (s)}+ µ2R2(t̂)

]
, if 0 ≤ s ≤ t̂,

2
√

y2(s)

g−2 y2(s)+g+2

[ √
π2

a2µ2
√
π1
{π1θζ−2 (s) +

√
π1π2

a2
q(s, p̄)ζ+2 (s)}+ 2θπ1

]
, if t̂ ≤ s ≤ T ,

(3.6)

M(s) =

{
−π1θ2(1 + T − s) +

∫ t̂

s
E1(u)du+

∫ T

t̂
E2(u)du, if 0 ≤ s ≤ t̂,

−π1θ2(1 + T − s) +
∫ T

s
E2(u)du, if t̂ ≤ s ≤ T ,

(3.7)

E(s) =
1

4π2
a2s(µ(s))

2R2(s) + q(s, p̄)µ(s)R(s) + (σ(s))2Q(s), (3.8)

y(s) =

exp
{
−2

√
π1

π2
a1µ1(t̂− s)

}
, if 0 ≤ s ≤ t̂,

exp
{
−2

√
π1

π2
a2µ2(T − s)

}
, if t̂ ≤ s ≤ T ,

(3.9)

ζ±(s) =


g+1 (1−

√
y1(s))± g−1

(
1− 1√

y1(s)

)
, if 0 ≤ s ≤ t̂,

g−2 (1−
√
y2(s))± g+2

(
1− 1√

y2(s)

)
, if t̂ ≤ s ≤ T .

(3.10)

where the indexes i = 1 and i = 2 in the functions R(s), E(s), and y(s) denote the functions
for 0 ≤ s ≤ t̂ and t̂ ≤ s ≤ T , respectively. In addition, the optimal price when the demand
is x at time s is given by

p̂s(x) = p̄+
1

2π2
asµ(s)(2Q(s)x+R(s)). (3.11)

Proof. See Appendix 6.1.

The optimal price in Equation (3.11) is the target price plus a term which depends on
the demand level and the distance from the horizon time T . The next proposition provides
some analytical properties for the optimal price.

Proposition 3.1. For any 0 ≤ s ≤ T , we have

(i) p̂s(x) is increasing in x ≥ 0.

(ii) If p̄+ (1/(2π2))asµ(s)R(s) ≥ 0, then p̂s(x) ≥ 0 for x ≥ 0.

(iii) p̂s(x) is decreasing in θ.

Proof. (i) From Equations (2.2), (2.4) and Lemma 6.1(ii), we have asµ(s) < 0 and Q(s) < 0
for all s ∈ [0, T ]. Thus, p̂s(x) is increasing in x.

(ii) From Lemma 6.1(iv), we have R2(s) ≥ 0. However, the sign of R1(s) is ambiguous. By
part (i), if p̂s(0) ≥ 0, then we have p̂s(x) ≥ 0 for x ≥ 0.

(iii) Since y1(s) > 0, a1µ1 < 0, g+1 y1(s) + g−1 < 0 and ζ−1 (s) > 0 by Lemma 6.1(iv), R1(s) is
increasing in θ. Therefore, p̂s(x) is decreasing in θ.
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These properties have intuitive interpretations. Part (i) implies that the optimal price
increases with the demand level. Part (ii) provides the condition for which the price function
p̂s(x) is positive. If the condition does not hold, the price is negative when the demand is
relatively low. For example, when the electricity demand is low on a windy night, the
supply of electricity generated by wind power could exceed the demand. In such a case, the
firm pays a fee to have the excess electricity taken up to avoid shutting down their power
generation. The fee can be considered as a negative price. Part (iii) means that when the
target level θ is set too high, the optimal price decreases in order to bring demand up to
the target level.

Applying the optimal price, the demand process satisfies the following SDE:

dXs = µ(s)q(s, p̂s)ds+ σ(s)dws

= {λ1(s)Xs + λ2(s)}ds+ σ(s)dws, (3.12)

where

λ1(s) =
1

π2
(asµ(s))

2Q(s), (3.13)

λ2(s) = µ(s)

[
as

(
1

2π2
R(s)asµ(s) + p̄− p0

)
+ 1

]
. (3.14)

This SDE permits a unique strong solution Xs, which is defined as follows (Theorem 6.14
of Yong and Zhou [7]):

Xs = eYs

{
x0 +

∫ s

0

λ2(u)e
−Yudu+

∫ s

0

σ(u)e−Yudwu

}
, (3.15)

where X0 = x0 and

Ys ≡
∫ s

0

λ1(u)du ≡

{
Y1(s), if 0 ≤ s ≤ t̂,

Y2(s), if t̂ ≤ s ≤ T ,
(3.16)

and

Y1(s) = log

(
g+1 y1(s) + g−1
g+1 y1(0) + g−1

)
−
√
π1
π2
a1µ1s, (3.17)

Y2(s) = Y1(t̂) + log

(
g−2 y2(s) + g+2
g−2 y2(t̂) + g+2

)
−

√
π1
π2
a2µ2(s− t̂). (3.18)

The demand Xs is a normally distributed random variable, and its expectation and
variance are given by

E[Xs] = eYs

{
x0 +

∫ s

0

λ2(u)e
−Yudu

}
, (3.19)

V ar(Xs) = e2Ys

∫ s

0

(σ(u))2e−2Yudu. (3.20)

Here, we define R(s) as R(s) = I(s)p̄+ J(s), where

I(s) =


2
√

y1(s)

g+1 y1(s)+g−1

[
π2

a1µ1
ζ+1 (s) + µ2I2(t̂)

]
, if 0 ≤ s ≤ t̂,

2
√

y2(s)

g−2 y2(s)+g+2

π2

a2µ2
ζ+2 (s), if t̂ ≤ s ≤ T ,

(3.21)

J(s) =


2
√

y1(s)

g+1 y1(s)+g−1

[ √
π2

a1µ1
√
π1

{
π1θζ

−
1 (s) +

√
π1π2

a1
(1− a1p0)ζ

+
1 (s)

}
+ µ2J2(t̂)

]
, if 0 ≤ s ≤ t̂,

2
√

y2(s)

g−2 y2(s)+g+2

[ √
π2

a2µ2
√
π1

{
π1θζ

−
2 (s) +

√
π1π2

a2
(1− a2p0)ζ

+
2 (s)

}
+ 2θπ1

]
, if t̂ ≤ s ≤ T .

(3.22)
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Lemma 3.1. I(s) > 0 for all s ∈ [0, T ].

Proof. Since a2µ2 < 0, ζ+2 (s) < 0 and g−2 y2(s) + g+2 > 0, we have I2(s) > 0 for all s.
Moreover, by g+1 y1(s) + g−1 < 0 and ζ+1 > 0, we obtain I1(s) > 0 for all s.

Proposition 3.2. If a2µ2 ≤ a1µ1 holds, then p̂s(x) is increasing in p̄, and E[Xs] is decreas-
ing in p̄.

Proof. For s ∈ [0, t̂], by Equations (3.21) and (3.10), we have

∂p̂s(x)

∂p̄
=

1

2π2
a1µ1I1(s) + 1

=
2
√
y1(s)

g+1 y1(s) + g−1

[
µ2 +

2a1µ1

a2

y2(t̂)

g−2 y2(t̂) + g+2
− a1µ1

a2

]
. (3.23)

Since g+1 y1(s)+g
−
1 < 0, g−2 y2(t̂)+g

+
2 > 0 and a2µ2 ≤ a1µ1, we have

∂p̂s(x)
∂p̄

> 0. For s ∈ [t̂, T ],
we obtain

∂p̂s(x)

∂p̄
=

1

2π2
a2µ2I2(s) + 1 =

2
√
y2(s)

g−2 y2(s) + g+2
> 0. (3.24)

Next, we show that the expected value

∂

∂p̄
E[Xs] = eYs

∫ s

0

∂

∂p̄
λ2(u)e

−Yudu. (3.25)

Since ∂
∂p̄
λ2(u) = auµ(u)(

1
2π2
auµ(u)I(u) + 1) < 0, we obtain ∂

∂p̄
E[Xs] < 0.

The assumption a2µ2 ≤ a1µ1 implies that customers are more sensitive to prices in
period [t̂, T ] than in period [0, t̂]. As the target price p̄ increases due to a rapidly increasing
commodity price, the optimal price increases and the expected demand decreases.
Proposition 3.3. Let Xc

s be the demand at time s when a fixed price p0 is applied throughout
the selling period [0, T ]. The variance of the peak demand with dynamic pricing is less than
that of fixed pricing: V ar[Xt̂] < V ar[Xc

t̂
].

Proof. By Equation (3.20) and V ar(Xc
t̂
) = σ2t̂, we have

V ar(Xt̂)

V ar(Xc
t̂
)
=

1

t̂

∫ t̂

0

e2(Y1(t̂)−Y1(u))du. (3.26)

Putting (3.17) into Equation (3.26), we obtain

V ar(Xt̂)

V ar(Xc
t̂
)

=
1

t̂

∫ t̂

0

(
2µ2

g+1 y1(u) + g−1

)2

e
−2

√
π1
π2

a1µ1(t̂−u)
du

=
µ2

a1µ1t̂

√
π2
π1

1− y1(0)

g+1 y1(0) + g−1

≈ 2µ2

g+1 y1(0) + g−1
< 1.

The third equation comes from Taylor expansion for y1(0) ≈ 1 − 2
√
π1/π2a1µ1t̂. The last

inequality is obtained by y1(0) > 1, g+1 < 0 and g+1 y1(0) < g+1 + g−1 = 2µ2 < 0.
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Proposition 3.4. Let X̄ ≡
∫ T

0
Xsds be the cumulative demand in time interval [0, T ] at time

t when the optimal price is used. Then, X̄ follows a normal distribution: X̄ ∼ N(µ̃, σ̃2),
where

µ̃ ≡
∫ T

0

E[Xs]ds, (3.27)

σ̃2 ≡
∫ T

0

∫ T

0

eYu+Yv min

{∫ u

0

(σ(m))2e−2Ymdm,

∫ v

0

(σ(m))2e−2Ymdm

}
dudv. (3.28)

Proof. See Appendix 6.2.

Proposition 3.5. If a2µ2 ≤ a1µ1 holds, then µ̃ is also decreasing in p̄.

Proof. Since E(Xs) is decreasing in p̄ by Proposition 3.2, this result directly follows from
Equation 3.27 .

4. Numerical Examples

In this section, we investigate the behavior of the optimal price and the effect of dynamic
pricing on peak demand using numerical examples. We use the electricity pricing decision
as the context for our examples. The time horizon is set as T = 1. Demand data were
obtained from the Tokyo Electric Power Company Holdings (TEPCO, [8]) which reports
electricity usage at 5-minute intervals. We fitted our model parameters to the electricity
usage data from 21 August 2012, using the method of moments to estimate the values µ1,
µ2, σ1, and σ2 for the coefficients of the demand process in Equation (2.1). We discretized
the time interval [0,1] into L time periods of length ∆t = 1/L. Since the data are reported
at 5-minute intervals, the time interval (i.e., one day) is divided into L = 288 periods.
The peak time is set as t̂ = 0.5, and the length of the time intervals [0, t̂] and [t̂, 1] are
L1 = 144 and L2 = 144, respectively. The coefficient of the demand process µ(s) is defined
by Equation (2.2), and σ(s) is defined by

σ(s) =

{
σ1 ≥ 0, if 0 ≤ s < t̂,

σ2 ≤ 0, if t̂ ≤ s ≤ T̄ .
(4.1)

The demand process for sub-interval k = 1, 2 was discretized as follows:

Xn+1 = Xn + µk∆t+ σk
√
∆tZn, n = 0, 1, ..., Lk, (4.2)

where Zn is an independent and identically distributed standard normal random variable.
Thus, we have E[Xn+1 − Xn] = µk∆t and V ar(Xn+1 − Xn) = σ2

k∆t, k = 1, 2. Let µ̂j,k be

the j-th sample moment for sub-interval k: µ̂j,k = (1/N)
∑N

n=1X
j,k
n , where N is the sample

size. By using the method of moments, we have µk = µ̂1,k/∆t and σk =
√

(µ̂2,k − µ̂2
1,k)/∆t.

Table 1 summarizes the estimated parameters and the set of baseline sensitivity param-
eters. The demand data and the sample path derived by model (2.1) with its estimated
parameters are shown in Figure 1. Figure 2 shows the optimal price which is derived by
Equation (3.11), and the corresponding demand is shown in Figure 1.

We can see that the peak demand for the dynamic pricing model is smaller than that
of the fixed pricing model. As shown in Figure 2, the optimal price rises ahead of the peak
time. This behavior is realistic, as suppliers constrain demand by increasing the price before
peak demand. In Figure 3, we show the average sample paths of the optimal price. We
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recorded all the trajectories of the selling prices along the simulated sample paths and then
calculated their means. The average price also rises ahead of the peak time. To investigate
the cause of this phenomenon, we consider the isopleths of the optimal price p̂s(x) for [0, t̂]
in Figure 4. We see that the optimal price increases as the demand becomes larger and
decreases as the time approaches the peak time. Thus, the decrease of the optimal price
due to the time elapsed would lead to an increase in the price ahead of the peak time.

Next, we investigate the effect of the parameters on the peak demand for the dynamic
pricing model, and compare the peak demand of the dynamic pricing model with that of
the fixed pricing model. Figure 5 shows the expected peak demand with respect to the
price response factor a ≡ |a1| = |a2|. We observe that the expected peak-demand for the
dynamic pricing is decreasing with the price response factor. This implies that dynamic
pricing is effective when the customer is sensitive to price. However, as shown in Figure 5,
if the customer is not sensitive to price, then the fixed pricing approach is better.

Figure 6 shows the variance in the peak demand with respect to the rate for the volatility
(ασ1, ασ2). The variance tends to increase with the volatility. This indicates that the
variance of the peak demand under the dynamic pricing policy is smaller than the variance
under the fixed pricing policy.

Figures 7 and 8 show the mean and variance of the peak demand as a function of the
stability factor π1. As expected, the mean demand decreases as the stability factor increases.

Figure 9 shows the expected cumulative demand under dynamic and fixed pricing policies
with respect to a. We can see that dynamic pricing is an effective method for reducing
electricity consumption when the customers are sensitive to the price.

5. Conclusions

In this paper, we consider a dynamic pricing model for stabilizing the peak demand in which
the dynamics of the demand follow a stochastic differential equation. The closed form of
the optimal pricing policy is derived and some analytical properties are investigated. In
particular, we show that dynamic pricing not only reduces peak demand but also mitigates
the fluctuations in the peak demand. Moreover, it is shown that a fixed pricing policy is
effective when the customers are not sensitive to prices.

For future research, we wish to extend our model to include a limit on the supply capacity
and to take into account the multiple supply sources. For instance, an electricity company
generates electricity from several sources (e.g., nuclear power, natural gas, coal, and solar
energy). These sources have different constraints on their availability and cost. Thus, we

Table 1: Summary of the model parameters and parameter estimates for the demand model
fitted to the electricity data from 22/8/2012

Stochastic Process Parameters Operating Parameters

Initial demand (x0) 25 Price response factor in [0, t̂] (a1) -0.07
Drift rate in [0, t̂] (µ1) 43.98 Price response factor in [t̂, T ] (a2) 0.07
Drift rate in [t̂, T ] (µ2) -40 Conventional fixed price (p0) 24
Volatility in [0, t̂] (σ1) 3.957 Stability factor for demand (π1) 5
Volatility in [t̂, T ] (σ2) 2.755 Stability factor for price (π2) 1

Target price level (p̄) 24
Target demand level (θ) 36
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Figure 1: Daily demand curves on 21 Au-
gust 2012 and the sample demand path
based on our model. t = 0 corresponds
to 4 am. (Unit: GW)
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the sample demand path (yen)
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Figure 4: Optimal price with respect to
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hope it will be an interesting topic to extend our models to a setting with multiple suppliers,
incorporating stochastic commodity prices and operational constraints.
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6. Appendix

6.1. Proof of Theorem 3.1

Proof. Define the function

w(p) = −π2(p− p̄)2 + µ(s)q(s, p)
∂Ws

∂x
. (6.1)

We have

w
′
(p) = −2π2(p− p̄) + µ(s)as

∂Ws

∂x
(6.2)

and w
′′
(p) = −2π2 < 0. Thus, w(p) is concave in p, and the first-order condition leads to

p̂s(x) = p̄+
1

2π2
asµ(s)

∂Ws

∂x
. (6.3)

Substituting Equation (6.3) into Equation (3.1), we obtain

−π1(x− θ)2 +
1

4π2
a2sµ

2(s)

(
∂Ws

∂x

)2

+
∂Ws

∂s
+ µ(s)q(s, p̄)

∂Ws

∂x
+

1

2
(σ(s))2

∂2Ws

∂x2
= 0. (6.4)

Since the functions µ(s) and as are not continuous with respect to s, we try a function of
the form

Ws(x) =

{
Q1(s)x

2 +R1(s)x+M1(s), if 0 ≤ s ≤ t̂,

Q2(s)x
2 +R2(s)x+M2(s), if t̂ ≤ s ≤ T .

(6.5)

Define Ws(x) = W 1
s (x) for 0 ≤ s ≤ t̂ and Ws(x) = W 2

s (x) for t̂ ≤ s ≤ T . Then our
objective is to solve Equation (6.4) with boundary conditionsW 1

t̂
(x) = W 2

t̂
(x) andW 2

T (x) =
−π1(x− θ)2.

Putting Equation (6.5) into Equation (6.4) we have

dQ(s)

ds
= π1 −

1

π2
a2sµ

2(s)Q2(s), (6.6)

dR(s)

ds
= −2π1θ −

1

π2
a2sµ

2(s)Q(s)R(s)− 2Q(s)q(s, p̄)µ(s), (6.7)

dM(s)

ds
= π1θ

2 − 1

4π2
a2sµ

2(s)R2(s)− q(s, p̄)µ(s)R(s)− σ2(s)Q(s). (6.8)
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First, we solve Equation (6.6). The solution is given by

Q(s) =
1

µ(s)

Ce2s
√
b1b2µ(s) − 1

Ce2s
√
b1b2µ(s) + 1

√
b1
b2

(6.9)

where b1 = π1, b2 = a2s/π2 and C is an arbitrary constant. For t̂ ≤ s ≤ T , the boundary
condition gives Q2(T ) = −π1. Thus, we have

C =
1−

√
π1

π2
a2µ2

1 +
√

π1

π2
a2µ2

exp

{
−2

√
π1
π2
a2µ2T

}
. (6.10)

This gives Q2(s) in Equation (3.5). For 0 ≤ s ≤ t̂, the boundary condition gives Q(t̂) =
Q2(t̂). From Equation (6.9), we have

C =
µ1η + µ2

µ2 − µ1η
exp

{
−2

√
π1
π2
a1µ1t̂

}
, (6.11)

where η = a1(g
−
2 y2(t̂)−g+2 )/a2(g−2 y2(t̂)+g+2 ) and g±2 = 1±

√
π1/π2a2µ2. Here, y2(·) is given

by Equation (3.9). By substituting it into (6.9), we obtain Q1(s) in Equation (3.5).
Next, we solve Equation (6.7). Suppose that the boundary condition is R(T̃ ) = C0.

Then, we can obtain the solution as follows:

R(s) = e
∫ T̃
s

1
π2

µ2
uauQ(u)du

{∫ T̃

s

(2π1θ + 2Q(u)q(p̄)µ(u))e
−

∫ T̃
u

1
π2

µ2
ra

2
rQ(r)dr

du+ C0

}
. (6.12)

For t̂ ≤ s ≤ T , the boundary condition gives R2(T ) = C0 = 2π1θ. In addition, we have∫ T̃

u

1

π2
µ2
ra

2
rQ(r)dr =

1

π2
a22µ2

∫ T

u

Q2(r)dr

= log

(
2

g−2 y2(u) + g+2

)
−
√
π1
π2
a2µ2(T − u) (6.13)

Substituting it into Equation (6.12), we obtain R2(s) in Equation (3.6). For 0 ≤ s ≤ t̂,
replacing T̃ to t̂ and C0 to R2(t̂) in Equation (6.12), we have R1(s) in Equation (3.6).

Finally, by using the solutions Q(x) and R(x), we can easily obtain the solution of
Equation (6.8) for t̂ ≤ s ≤ T as

M2(s) = −π1θ2(1 + T − s) +

∫ T

s

E2(u)du, (6.14)

where

E2(s) =
1

4π2
a22µ

2
2R2(s) + q(s, p̄)µ2R2(s) + σ2

2Q2(s). (6.15)

It follows from M1(t̂) =M2(t̂) that

M1(s) =M2(t̂)−
∫ t̂

s

E1(u)du, (6.16)
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where

E1(s) =
1

4π2
a21µ

2
1R1(s) + q(s, p̄)µ1R1(s) + σ2

1Q1(s). (6.17)

The optimal price is given by Equation (6.3), and the use of Q(s) and R(s) yields Equation
(3.11).

Next lemma will be used to show some analytical properties.
Lemma 6.1. For 0 ≤ s ≤ T , we have
(i) 1 ≤ yi(s), i = 1, 2.

(ii) Qi(s) < 0, i = 1, 2.

(iii) η < 0.

(iv) ζ±1 (s) > 0 and ζ±2 (s) < 0.

Proof. We only show (i)-(iv) for i = 1.
(i) Since y1(s) is decreasing in s for 0 ≤ s ≤ t̂ and y1(t̂) = 1, we have 1 ≤ y1(s).
(ii) First, we show that η < 0 which is part (iii). From a2 > 0 and µ2 < 0, we have g−2 > 0.
For g+2 > 0, it follows from part (i) that g−2 y2(s) − g+2 > g−2 − g+2 = −2

√
π1/π2a2µ2 > 0.

Moreover, we obtain g−2 y2(s) + g+2 > 0. For g+2 < 0, we have g−2 y2(s)− g+2 > 0. In addition,
g−2 y2(s) + g+2 > g−2 + g+2 = 2 > 0. Thus, we obtain η < 0. It gives g+1 = µ2 + µ1η < 0. For
g−1 > 0, we have g+1 y1(s)− g−1 < 0. In addition, we get g+1 y1(s) + g−1 < g+1 + g−1 = 2µ2 < 0.
Since a1µ1 < 0, we have Q1(s) < 0. For g−1 < 0, we have g+1 y1(s) + g−1 < 0. Since
g+1 y1(s)− g−1 < g+1 − g−1 = 2µ1η < 0, we have Q1(s) < 0.
(iv) If g−1 > 0, then ζ+1 (s) > 0 by part (i). When g−1 < 0, ζ+1 (s) can be rewritten as ζ+1 (s) =

(g+1 −g−(y1(s))−
1
2 )(1− (y1(s))

1
2 ). Here, we see that g+1 −g−(y1(s))−

1
2 < g+1 −g−1 = 2µ1η < 0.

Hence, ζ+1 (s) > 0. Similarly, we can obtain ζ−1 (s) > 0.

6.2. Proof of Proposition 3.4

Proof. The expectation of X̄ is given by E[X̄] =
∫ T

0
E[Xs]ds. The covariance of X̄s and X̄m

is given by

Cov(X̄s, X̄m) = E[X̄sX̄m]− E[X̄s]E[X̄m]

=

∫ s

0

∫ m

0

E[XuXv]dudv − µ̃sµ̃m

=

∫ s

0

∫ m

0

(Cov(Xu, Xv) + E(Xu)E(Xv))dudv − µ̃sµ̃m.

=

∫ s

0

∫ m

0

eYu+Yv min

{∫ u

0

(σ(m))2e−2Ymdm,

∫ v

0

(σ(m))2e−2Ymdm

}
dudv.

By setting s = m = T , we obtain the equation (3.28).
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