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Abstract In constrained nonlinear optimization, the squared slack variables can be used to transform a
problem with inequality constraints into a problem containing only equality constraints. This reformula-
tion is usually not considered in the modern literature, mainly because of possible numerical instabilities.
However, this argument only concerns the development of algorithms, and nothing stops us in using the
strategy to understand the theory behind these optimization problems. In this note, we clarify the relation
between the Karush-Kuhn-Tucker points of the original and the reformulated problems. In particular, we
stress that the second-order sufficient condition is the key to establish their equivalence.
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1. Introduction

The technique for converting an optimization problem with inequality constraints into a
problem containing only equality constraints using squared slack variables is well-known
for decades. It had been used by many researchers, even before the emerging of modern
studies of algorithms for nonlinear programming (NLP) in 1960’s [6]. In the present days,
it is still a useful tool for the optimization theory [2]. Although it had been also used
in the development of algorithms [9–11], the approach is usually avoided for this purpose,
especially in the optimization community. The increase of the dimension of the problem is
one of the reasons to avoid it, but the computational capabilities nowadays makes it less
problematic. In fact, the main reason lies certainly in the possible numerical instabilities
caused by the reformulation [4, 8]. These difficulties were also shown recently in [1], where
numerical experiments using the sequential quadratic programming method were performed.

If one considers the pros and cons of the squared slack variables, the argument against
it may be more predominant. However, here we choose a similar path taken by Bertsekas
in [2]. In this book, optimality conditions for problems containing only equality constraints
are considered first. Then, the squared slack variables strategy is used to derive optimality
conditions for problems with inequality constraints. Similarly, in this work, we consider the
slack variables technique as a tool to understand the theory behind optimization problems.
More specifically, our aim is to analyze the relation between the original problem containing
inequality constraints and the reformulated problem with additional slack variables. It is
well-known that these problems are equivalent in terms of global/local optimal solutions,
but the relation between their stationary points, or Karush-Kuhn-Tucker (KKT) points, has
been unclear until recently.

In fact, Fukuda and Fukushima [3] had established these relations in the context of
nonlinear second-order cone programming (NSOCP). For such problems, the reformulation
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using slack variables turns out to be an NLP problem with a particular structure. This can
be viewed as an advantage, if one considers the second-order cone as an object that is difficult
to deal with. Subsequently, Lourenço, Fukuda and Fukushima [5] extended this work for
nonlinear semidefinite programming (NSDP) problems, although the main motivation in
this case was in easily deriving their second-order conditions. In both NSOCP and NSDP
cases, the equivalence between the original and the reformulated problems was established
with the second-order sufficient condition.

Recalling that NLP problems are particular cases of NSOCP problems (which, in turn,
are particular cases of NSDP problems), in this paper, we turn back to the former more
primitive type of problems. There are two reasons for that. One is that such an analysis for
NLP had apparently not been published in the literature. Another reason is to observe if
there are some gap between the results obtained for NLP and the ones given for NSOCP and
NSDP. As it can be seen in this work, it turns out that the results are similar. However, as
expected, the analyses here are much easier to follow, because it does not involve complicated
Jordan algebras or operations with matrices. Moreover, most researchers from optimization
are familiar with NLP, but the same cannot be said for NSOCP and NSDP. This motivated
us to write down this paper.

The following notations will be used here. The Euclidean inner product and norm are
denoted by ⟨·, ·⟩ and ∥ · ∥, respectively. The transpose of a vector x ∈ Rs is denoted by x⊤.
For any vector x := (x1, . . . , xs)

⊤ ∈ Rs, we use diag(x) to represent the diagonal matrix with
diagonal entries xi, i = 1, . . . , s. The gradient and the Hessian of a function p : Rs → R at
x ∈ Rs are denoted by ∇p(x) and ∇2p(x), respectively. For a function q : Rs+ℓ → R, the
gradient and the Hessian of q at (x, y) ∈ Rs+ℓ with respect to x are denoted by ∇xq(x, y)
and ∇2

xq(x, y), respectively. For a function r : Rs → Rℓ, the Jacobian of r at x ∈ Rs is given
by Jr(x) ∈ Rℓ×s.

The paper is organized as follows. In Section 2, we introduce the definition of the
problem, the KKT conditions, and other preliminary results. In Section 3, we show that the
original problem is equivalent to the reformulated problem with squared slack variables in
terms of KKT points, under the second-order sufficient conditions. Since KKT conditions
are necessary for optimality under a constraint qualification, in Section 4, we also prove the
equivalence between linear independence constraint qualification satisfied by KKT points
of the original and the reformulated problems. We conclude with some final remarks in
Section 5.

2. Preliminaries

Let us consider the following nonlinear programming (NLP) problem with inequality con-
straints:

minimize
x

f(x)

subject to g(x) ≥ 0,
(P1)

where f : Rn → R and g : Rn → Rm are twice continuously differentiable functions. Also,
let g := (g1, . . . , gm)

⊤ with gi : Rn → R, i = 1, . . . ,m. Introducing slack variables y :=
(y1, . . . , ym)

⊤ ∈ Rm, we obtain the following formulation:

minimize
x,y

f(x)

subject to gi(x)− y2i = 0, i = 1, . . . ,m.
(P2)

The above problem is equivalent to (P1) in the following sense. If (x∗, y∗) is a global (local)
optimal solution of (P2), then x∗ is a global (local) optimal solution of (P1). Conversely,
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if x∗ is a global (local) optimal solution of (P1), then there exists y∗ such that (x∗, y∗) is a
global (local) optimal solution of (P2) [10, Proposition 3.1].

From the practical viewpoint, it is more important to examine the relation between
stationary points, or KKT points, of the two problems, because we can only expect to
compute such points in practice. However, the relation between stationary points is less
clear than that between optimal solutions.

We say that (x, λ) ∈ Rn+m is a KKT pair of problem (P1) if the following KKT condi-
tions hold:

∇f(x)−
m∑
i=1

λi∇gi(x) = 0, (P1.1)

λi ≥ 0, i = 1, . . . ,m, (P1.2)

gi(x) ≥ 0, i = 1, . . . ,m, (P1.3)

λigi(x) = 0, i = 1, . . . ,m. (P1.4)

Also, we say that (x, y, λ) ∈ Rn+2m is a KKT triple of problem (P2) when

∇f(x)−
m∑
i=1

λi∇gi(x) = 0, (P2.1)

yiλi = 0, i = 1, . . . ,m, (P2.2)

gi(x)− y2i = 0, i = 1, . . . ,m. (P2.3)

Notice that under a constraint qualification, the above conditions, for both problems, are
necessary for optimality [2]. For a KKT pair (x, λ) of (P1), we define the following sets of
indices:

I0 :=
{
i ∈ {1, . . . ,m} : gi(x) = 0

}
,

I00 :=
{
i ∈ {1, . . . ,m} : gi(x) = 0, λi = 0

}
,

I0P :=
{
i ∈ {1, . . . ,m} : gi(x) = 0, λi > 0

}
,

IP0 :=
{
i ∈ {1, . . . ,m} : gi(x) > 0, λi = 0

}
.

(2.1)

Observe that these sets are also suitable for a KKT tripe (x, y, λ) of (P2). In the latter case,
however, λi is not necessarily nonnegative. So, we also have to consider the following index
set:

I0N :=
{
i ∈ {1, . . . ,m} : gi(x) = 0, λi < 0

}
. (2.2)

Clearly, the sets I00, I0P and I0N constitute a partition of I0, and the sets I0 and IP0

constitute a partition of the whole set of indices {1, . . . ,m}. Moreover, from (P2.3), yi is
determined by the value of gi(x). In other words, yi = 0 if and only if i ∈ I0 = I00∪I0P∪I0N ,
and yi ̸= 0 if and only if i ∈ IP0. We also point out that, for problem (P1), the well-known
strict complementarity condition means that I00 = ∅.

3. Equivalence Between KKT Points

Here, we will establish the equivalence between KKT points of problems (P1) and (P2).
One of the implications is simple, as shown in the next proposition.

Proposition 3.1. Let (x, λ) ∈ Rn+m be a KKT pair of (P1). Then, there exists y ∈ Rm

such that (x, y, λ) is a KKT triple of (P2).
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Proof. The condition (P2.1) holds trivially. Observe that (P1.3) implies the existence of
yi ∈ R, i = 1, . . . ,m, such that (P2.3) holds. Moreover, from (P1.4) and (P2.3), we have(

yiλi

)2
= gi(x)λ

2
i = 0

for all i = 1, . . . ,m. Then, (P2.2) also holds.

The converse is not always true, that is, even if (x, y, λ) is a KKT triple of (P2), (x, λ)
is not necessarily a KKT pair of (P1). In fact, the condition (P1.2), concerning the sign of
the multiplier, may not hold. The following example illustrates this situation.

Example 3.2. Let problem (P1) be defined as follows

minimize
x

1
2
x2

subject to sinx ≥ 0,

with n = 1. Then, (x, y, λ) = (0, 0, 0) and (x, y, λ) = (π, 0,−π) are both KKT triples
of (P2). However, (x, λ) = (0, 0) is a KKT pair of (P1), and (x, λ) = (π,−π) is not, since
the condition (P1.2) fails to hold.

We will show now that the converse is true when the second-order sufficient condition
is assumed (see, for example, [2, Section 3.3] or [7, Section 12.5]). To this end, we define
the Lagrangian functions L : Rn+m → R and L : Rn+2m → R for problems (P1) and (P2),
respectively, by

L(x, λ) := f(x)−
m∑
i=1

λigi(x),

L(x, y, λ) := f(x)−
m∑
i=1

λi

(
gi(x)− y2i

)
.

Thus, the second-order sufficient condition for (P1), which has only inequality constraints,
is given below.

Definition 3.3. Let (x, λ) ∈ Rn+m be a KKT pair of (P1). The second-order sufficient
condition (SOSC) holds if ⟨

∇2
xL(x, λ)d, d

⟩
> 0

for all nonzero d ∈ Rn such that

⟨∇gi(x), d⟩ = 0, i ∈ I0P and ⟨∇gi(x), d⟩ ≥ 0, i ∈ I00,

where

∇2
xL(x, λ) = ∇2f(x)−

m∑
i=1

λi∇2gi(x).

The above definition shows that SOSC holds when the Hessian of the Lagrangian is
positive definite on the critical cone. For problems with only equality constraints, the
definition of SOSC is the same, but the critical cone is different. In fact, if an NLP problem
has only hi(x) = 0, i = 1, . . . , s as constraints, then a direction d ∈ Rn is in the critical
cone if it satisfies ⟨∇hi(x), d⟩ = 0 for all i = 1, . . . , s. This fact will be used to prove the
next proposition, which shows that SOSC of the equality constrained problem (P2) can be
written using the Lagrangian function associated to (P1).
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Proposition 3.4. Let (x, y, λ) ∈ Rn+2m be a KKT triple of (P2). The SOSC holds if

⟨
∇2

xL(x, λ)v, v
⟩
+ 2

m∑
i=1

λiw
2
i > 0 (3.1)

for all nonzero (v, w) ∈ Rn+m such that

⟨∇gi(x), v⟩ − 2yiwi = 0, i = 1, . . . ,m.

Proof. From the usual definition of SOSC in nonlinear programming, we observe that a
KKT point (x, y, λ) satisfies SOSC when⟨

∇2
(x,y)L(x, y, λ)d, d

⟩
> 0

for all nonzero d ∈ Rn+m such that(
∇gi(x)

⊤,−2yie
⊤
i

)
d = 0, i = 1, . . . ,m,

where ei is the ith column of the identity matrix of dimension m and

∇2
(x,y)L(x, y, λ) =

[
∇2

xL(x, λ) 0
0 2 diag(λ)

]
.

The result follows by letting d := (v, w) with v ∈ Rn and w ∈ Rm.

Lemma 3.5. Let (x, y, λ) ∈ Rn+2m be a KKT triple of (P2) and assume that it satisfies
SOSC. Then, we have I00 = I0N = ∅.

Proof. Assume that there exists an index j such that gj(x) = yj = 0. Let us prove that in
this case λj > 0. Taking v = 0 in (3.1), we have

λjw
2
j +

∑
i ̸=j

λiw
2
i > 0 (3.2)

for all nonzero w ∈ Rm such that

yiwi = 0, i = 1, . . . ,m.

In particular, the inequality (3.2) holds when wj ̸= 0 and wi = 0 for all i ̸= j. But this
choice of w shows that λjw

2
j > 0, which implies λj > 0. Therefore, we conclude that

I00 = I0N = ∅.

Proposition 3.6. Let (x, y, λ) ∈ Rn+2m be a KKT triple of (P2) and assume that it satisfies
SOSC. Then, (x, λ) is a KKT pair of (P1).

Proof. Observe that (P1.1) trivially holds and that (P2.3) implies (P1.3). For each i =
1, . . . ,m, multiplying (P2.2) with yi and recalling (P2.3), we obtain

yi(yiλi) = 0 ⇔ gi(x)λi = 0,

and so (P1.4) is satisfied. Finally, (P1.2) holds because I0N = ∅ from Lemma 3.5.

The next proposition shows that the KKT pair (x, λ) of (P1) also satisfies SOSC. In
addition, it also satisfies the strict complementarity.
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Proposition 3.7. Let (x, y, λ) ∈ Rn+2m be a KKT triple of (P2) that satisfies SOSC. Then,
(x, λ) is a KKT pair of (P1) satisfying SOSC and the strict complementarity.

Proof. Proposition 3.6 shows that (x, λ) is a KKT pair of (P1) and it also satisfies the strict
complementarity (I00 = ∅) from Lemma 3.5. Recalling that λi = 0 for all i ∈ IP0, we can
rewrite the SOSC of (P2) as⟨

∇2
xL(x, λ)v, v

⟩
+ 2

∑
i∈I0P

λiw
2
i > 0

for all nonzero (v, w) ∈ Rn+m such that

⟨∇gi(x), v⟩ = 0, i ∈ I0P ,
⟨∇gi(x), v⟩ − 2yiwi = 0, i ∈ IP0.

Since there is no restriction for wi with i ∈ I0P , we can set wi = 0 for all i ∈ I0P . Also, we
observe that wi, i ∈ IP0 are determined by the value of v ∈ Rn. Indeed, if there exists a
nonzero v ∈ Rn satisfying ⟨∇gi(x), v⟩ = 0 for all i ∈ I0P , then, for each i ∈ IP0, there exists
wi ∈ R such that ⟨∇gi(x), v⟩ − 2yiwi = 0, since yi ̸= 0. Thus, from the SOSC given above,
we have

⟨∇2
xL(x, λ)v, v⟩ > 0

for all nonzero v ∈ Rn such that ⟨∇gi(x), v⟩ = 0, i ∈ I0P . This condition holds true
vacuously, when there exists no v ̸= 0 satisfying ⟨∇gi(x), v⟩ = 0 for all i ∈ I0P . Hence,
recalling that I00 = ∅, we conclude that (x, λ) satisfies the SOSC of (P1).

The above results show that if the SOSC of the reformulated problem (P2) is satisfied,
then, in order to obtain a KKT point of the original problem (P1), it is sufficient to find a
KKT point of the reformulated problem (P2). Moreover, such a KKT point also satisfies
the SOSC of (P1) and the strict complementarity condition. However, in practice, whatever
conditions we assume should be referred to the original problem (P1). So, we now show that
the converse implication also holds. Observe that in this case, the strict complementarity
condition is required.
Proposition 3.8. Let (x, λ) ∈ Rn+m be a KKT pair of (P1) that satisfies SOSC and the
strict complementarity. Then, there exists y ∈ Rm such that (x, y, λ) is a KKT triple of (P2),
and any such triple satisfies SOSC.

Proof. From Proposition 3.1, it is sufficient to show that (x, y, λ) satisfies SOSC of (P2).
Note that (P1.2) implies I0N = ∅. This fact, together with the strict complementarity
condition, shows that {1, . . . ,m} = I0P ∪ IP0. Now, let (v, w) ∈ Rn+m be an arbitrary
nonzero vector such that

⟨∇gi(x), v⟩ = 0, i ∈ I0P ,
⟨∇gi(x), v⟩ − 2yiwi = 0, i ∈ IP0.

(3.3)

From Proposition 3.4, we have to show that (3.1) holds.
First, let us consider the case where v ̸= 0. From the SOSC of (P1), we clearly obtain

⟨∇2
xL(x, λ)v, v⟩ > 0. Also, for any wi ∈ R, λiw

2
i = 0 when i ∈ IP0, and λiw

2
i ≥ 0 when

i ∈ I0P . Then, we conclude that

⟨∇2
xL(x, λ)v, v⟩+ 2

m∑
i=1

λiw
2
i > 0,

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



268 E.H. Fukuda & M. Fukushima

which means that the SOSC of (P2) is satisfied in this case.
Now, consider the case where v = 0 and w ∈ Rm is an arbitrary nonzero vector satisfy-

ing (3.3). Then, once again from Proposition 3.4, we have to prove that

m∑
i=1

λiw
2
i =

∑
i∈I0P∪IP0

λiw
2
i > 0 (3.4)

for all nonzero w ∈ Rm such that yiwi = 0 for all i ∈ IP0. Since yi ̸= 0 in this case, we have
to show that (3.4) holds for all nonzero w ∈ Rm such that

wi = 0 for all i ∈ IP0. (3.5)

Note that if I0P = ∅ or, in other words, IP0 = {1, . . . ,m}, then there exists no w ̸= 0
satisfying (3.5). So, the condition (3.4) holds vacuously. Thus, let I0P ̸= ∅, and choose an
arbitrary w ̸= 0 satisfying (3.5). For such a vector w, there exists an index j with wj ̸= 0.
Since j ∈ I0P , we have λjw

2
j > 0, which clearly implies (3.4). We then conclude that the

SOSC of (P2) holds in this case.

4. Equivalence Between the Regularity Conditions

We now proceed with results concerning the regularity conditions. We recall that under the
linear independence constraint qualification (LICQ), the KKT conditions are necessary for
optimality. Moreover, we say that the LICQ condition of an NLP problem holds at a point
if the gradients of the equality constraints and the gradients of active inequality constraints
are linearly independent (see, for example, [2, Section 3.3] or [7, Section 12.1]).
Proposition 4.1. Let (x, y, λ) ∈ Rn+2m be a KKT triple of (P2) and assume that it satisfies
LICQ and SOSC. Then, (x, λ) is a KKT pair of (P1) that satisfies LICQ.

Proof. From Proposition 3.6, (x, λ) is a KKT pair of (P1). We have to prove that (x, λ) sat-
isfies LICQ of (P1), which means that the gradients of active constraints∇gi(x), i ∈ I0P∪I00

are linearly independent. Since (x, y, λ) satisfies LICQ of (P2), the matrix [Jg(x),−2diag(y)]
has linearly independent rows. Without loss of generality, we can write this matrix as[

JgI0P∪I00(x) 0 0
JgIP0

(x) 0 −2diag(yi)i∈IP0

]
where JgI0P∪I00(x) and JgIP0

(x) denote the part of the Jacobian Jg(x) with indices in
I0P ∪ I00 and IP0, respectively. Observe also that diag(yi)i∈IP0

is nonsingular. Then, we
conclude that the rows of JgI0P∪I00(x) are linearly independent, which is precisely the LICQ
condition of (P1).

Proposition 4.2. Let (x, λ) ∈ Rn+m be a KKT pair of (P1) and assume that it satisfies
LICQ. Then, there exists y ∈ Rm such that (x, y, λ) is a KKT triple of (P2), and any such
triple satisfies LICQ.

Proof. From Proposition 3.1, it is sufficient to prove that (x, y, λ) satisfies LICQ of (P2).
Assume, for the purpose of contradiction, that (x, y, λ) does not satisfy LICQ for (P2).
Then, there exist αi, i = 1, . . . ,m, not all zero such that

m∑
i=1

αi∇gi(x) = 0 and αiyi = 0, i = 1, . . . ,m.
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The latter equalities show that αi = 0 when i ∈ IP0. So, recalling that {1, . . . ,m} =
I0P ∪ I00 ∪ IP0, there exist αi, i ∈ I0P ∪ I00, not all zero such that∑

i∈I0P∪I00

αi∇gi(x) = 0.

But this contradicts the LICQ condition of (P1), and so (x, y, λ) satisfies LICQ of (P2).

Summarizing the above discussions and the results of Section 3, we state the main result
about the squared slack variables approach.

Theorem 4.3. The following statements hold.

(a) Let (x, λ) ∈ Rn+m be a KKT pair of (P1). Assume that it satisfies LICQ, SOSC and the
strict complementarity. Then, there exists y ∈ Rm such that (x, y, λ) is a KKT triple of
(P2), and any such triple satisfies LICQ and SOSC.

(b) Let (x, y, λ) ∈ Rn+2m be a KKT triple of (P2). Assume that it satisfies LICQ and SOSC.
Then, (x, λ) is a KKT pair of (P1) satisfying LICQ, SOSC and the strict complemen-
tarity.

Proof. The item (a) follows from Propositions 3.8 and 4.2, and the item (b) follows from
Propositions 3.7 and 4.1.

5. Final Remarks

We have analyzed the use of squared slack variables in the context of NLP. We have proved
that, under the second-order sufficient conditions and the regularity conditions, KKT points
of the original and the reformulated problems are essentially equivalent. A future research
topic is to see if other conditions, that appear frequently in convergence analysis of opti-
mization methods, can be considered instead of the second-order sufficient condition. In
fact, from the proof of Proposition 3.6, we observe that in order to obtain the equivalence of
the KKT points, it is sufficient to have I0N = ∅. From Lemma 3.5, it means that the SOSC
assumption for (P2) is strong in the sense that it also gives I00 = ∅. A similar question also
arises in more general contexts, such as the nonlinear second-order cone programming and
the nonlinear semidefinite programming problems, and should be a matter of investigation.
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