ホームへ リンク お問合せ

■日時:2020年11月14日(土) 13:30-18:00
■場所:中央電気倶楽部 ホール
   〒530-0004 大阪府大阪市北区堂島浜2丁目1−25
   https://www.chuodenki-club.or.jp
   ※会場の収容定員は 210 名ですが,本シンポジウムは上限を 70 名として開催します

■プログラム:
13:30-13:35 開会挨拶 シンポジウム実行委員長 牧野 和久(京都大学)
13:35-14:20 講演1 福永 拓郎 (中央大学)「不確実性下での適応的最適化」
14:20-15:05 講演2 前原 貴憲 (理化学研究所)「束上の劣モジュラ関数最大化」
15:05-15:20 休憩
15:20-16:05 講演3 河瀬 康志 (東京大学)「オンラインナップサック問題に対するアルゴリズム」
16:05-16:50 講演4 後藤 順哉 (中央大学)「分布的ロバスト最適化モデリング---解釈と実用への示唆」
16:50-17:05 休憩
17:05-17:50 講演5 黒木 裕介(ヤマトホールディングス株式会社)「ヤマト運輸プログラミングコンテスト2019を振り返って」
17:50-17:55 閉会挨拶 関西支部長 滝根哲哉(大阪大学)
■日時:2019年11月16日(土) 13:30-17:30
■場所:中央電気倶楽部511号室
   〒530-0004 大阪府大阪市北区堂島浜2丁目1−25
   https://www.chuodenki-club.or.jp

■プログラム:
13:30-13:35 開会挨拶
シンポジウム実行委員長 三道弘明(関西学院大学総合政策学部)

13:35-14:25  講演1
純粋戦略で可解な対称ゲーム-純粋戦略均衡の存在と交換可能性
Solvable symmetric games in pure strategies - existence of pure strategy equilibria and interchangebility
渡邊 隆裕(首都大学東京社会科学研究科)
[講演要旨]ゲーム理論の出発点である2人零和ゲームの解(マキシミニ戦略の組)においては,存在性,自己拘束性(相手がそれを選んでいる限りは,自分はそれを選ぶことが最適),交換可能性(解が2つあるときに,自分と相手が異なる解の戦略を選んでも,その組み合わせもまた解となる)の3つの条件を満たしている.一方,n人非零和ゲームの解であるナッシュ均衡は,存在性と自己拘束性は満たしているが,一般には交換可能性を満たしていない.本発表では,非零和ゲームでも純粋戦略均衡が交換可能性を持つ対称ゲームとして,UC(Unilaterally Competitive)ゲーム,PS (Pairwise Solvable)という2つのゲームのクラスを紹介し,その純粋戦略均衡が存在する十分条件について示す.

14:30-15:20 講演2
「イノベーターのジレンマ」のゲーム理論的解明
How to Solve the Innovator's Dilemma by Game Theory
安田 洋祐(大阪大学経済学研究科)
[講演要旨]成功した巨大企業が新世代の技術競争に敗れ去る現象は,ハーバード大学のクリステンセン教授が命名した「イノベーターのジレンマ」として広く知られている.本講演では,ゲーム理論の寡占市場モデルを用いて「なぜジレンマが起こるのか?」「どうすれば解決できるのか?」といった問題を分析する.高騰する巨大企業による買収額や,ジレンマの解決策として近年注目される「両利きの経営」に理論的な裏付けを提示したい.

15:20-15:35 休憩

15:35-16:25 講演3
金融市場における一般化された市場価格インパクト・モデルのもとでの取引執行ゲーム
Trade Execution Games under a Generalized Market Price Impact Model in Financial Markets
大西 匡光(大阪大学経済学研究科)
[講演要旨]金融市場には,その売買取引が資産の市場価格にインパクトを与えるような「大きな」トレーダーが存在する.本講演では,講演者らがごく最近に提案した一般化された市場価格インパクト・モデルのもとで,2人の大きなトレーダーによって為される戦略的な取引執行の問題をマルコフ・ゲーム(確率ゲーム)として定式化し,そのマルコフ完全均衡を導出して特徴付ける.さらに幾種類かの設定のもとでの興味深い数値例を示す.

16:30-17:20 講演4
捜索資源配分ゲームに関する研究の変遷
A Research History on Search Allocation Games
宝崎 隆祐(防衛大学校情報工学科研究科)
[講演要旨]この報告では,捜索ゲームの一モデルである「捜索資源配分ゲーム」に関する当研究室の長年の研究成果を紹介する.捜索理論(あるいは,探索理論)は第二次世界大戦における米海軍の対潜水艦作戦を起源とし,近年では遭難者,被災者の捜索救難活動に活用されている.捜索資源配分ゲームは,捜索対象となる目標の意思決定とともに,捜索者の合理的な捜索資源配分を研究するモデルであり,主として非協力ゲームの枠組みで論じられている.

17:20-17:25 閉会挨拶
関西支部長 滝根哲哉(大阪大学工学研究科)
■日時:2018年12月14日(金) 13:20-16:50
■場所:大阪大学吹田キャンパスコンベンションセンター 会議室1
   〒565-0871 大阪府吹田市山田丘1-1
   https://facility.icho.osaka-u.ac.jp/convention/map.html

■プログラム:
13:20-13:30 開会の挨拶
関西支部長 森田浩(大阪大学)

13:30-14:30  講演1
ug[SCIP,*]:混合整数計画ソルバ技術を利用した並列分枝限定法ソルバ開発用ライブラリ —シュタイナー木ソルバSCIP-Jackを例として—
品野勇治(Zuze Institute Berlin)

14:40-15:40 講演2
混合整数線形モデルによるエネルギーシステムの最適化 —最適化のエネルギー分野への適用—
横山良平(大阪府立大学)

15:50-16:50 講演3
Computational complexity of shape constrained estimation
Andrew L Johnson (Texas A&M University, 大阪大学)

■各講演の概要:
[講演1]
題目:ug[SCIP,*]:混合整数計画ソルバ技術を利用した並列分枝限定法ソルバ開発用ライブラリ —シュタイナー木ソルバSCIP-Jackを例として—
講演者:品野勇治(Zuze Institute Berlin)
講演概要:Zuse Institute Berlin(ZIB)を中心として開発されているSCIP(Solving Constraint Integer Programs)は,拡張可能な分枝カット法のフレームワークとして広く利用されている.SCIPの拡張性を維持して,並列ソルバを開発するためのソフトウェアライブラリがug[SCIP,*]である.本講演では,主にSCIPをシュタイナー木ソルバとしてカスタマイズして開発されたシュタイナー木ソルバSCIP-Jackの並列化を例として,並列分枝限定法ソルバ開発用ライブラリug[SCIP,*]を紹介する.

[講演2]
題目:混合整数線形モデルによるエネルギーシステムの最適化 —最適化のエネルギー分野への適用—
講演者:横山良平(大阪府立大学)
講演概要:複数の種類・台数の機器から構成されるエネルギーシステムを適切に設計・運用することは,コスト削減,エネルギー消費量削減,CO2排出量削減などの観点から重要である.本講演では,講演者らが研究に取組んできた混合整数線形モデルによるエネルギーシステムの最適化に関して,特に最近研究を進めている階層的最適化による大規模問題の最適化,ならびにエネルギー需要量の不確実条件下におけるロバスト最適化について述べる.

[講演3]
題目:Computational complexity of shape constrained estimation
講演者:Andrew L Johnson (Texas A&M University)
講演概要:Shape constrained estimators can provide significant improvement in finite sample performance by imposing assumptions that that are justified by engineering or economic theory. The assumptions of monotonicity, convexity and S-shape will be emphasized. Both smooth estimators and piece-wise linear nonparametric estimators will be considered and the computational benefits of piece-wise linear approximation will be emphasized. Applications to power curves for wind turbines, production functions, and value functions will be discussed.
■日程: 2018 年 11 月 2 日(金)- 11 月 4 日(日)
 ※11/2 は 15:00 頃の開始,11/4 は 13:00 頃の終了を予定しています

■会場: 関西大学 飛鳥文化研究所(奈良県明日香村)
 ※最寄り駅(近鉄・橿原神宮前駅)から会場までのアクセスについては参加者宛に後日ご連絡します.
 ※大学の宿泊施設のため,ホテルのようなサービスがないところ(アメニティグッズの準備が不十分など)があります.あらかじめご了承ください.詳細は参加者宛にご連絡いたします.

■特別講演
 ・河瀬 康志 先生(東京工業大学)
 ・林 俊介 先生(東北大学)


【優秀発表賞のお知らせ】
======================================================================
2018 年 11 月 2 日(金)~ 11 月 4 日(日)に,関西大学 飛鳥文化研究所で「日本オペレーションズ・リサーチ学会 関西支部 SSOR」を開催しました.関西支部 SSOR での発表のうち,30歳未満の者(表彰規程 第 4 条)が行った20 分の口頭発表(22 件)の発表は「関西支部若手研究発表会」として開催し,厳正な審査を行った結果,以下の 4 件に「日本オペレーションズ・リサーチ学会 関西支部 若手研究発表会 優秀発表賞」が授与されました(以下,受賞者氏名の五十音順に記載).

受賞者:磯西 市路(京都大学大学院)
タイトル:「非線形錐計画問題に対する修正 DC 法とその収束性」
共著者:福田 エレン秀美(京都大学大学院),山下 信雄(京都大学大学院)
選考理由:本発表では,非線形錐計画問題に対する DC 分解に基づく手法の改良が提案された.先行研究ではアルゴリズム内の正則化パラメータが正の定数であるときにのみ大域的収束性が示されていたが,本発表では,いくつかの仮定の下で正則化パラメータを零に収束するように変化させても大域的収束することが示された.数値実験の結果も良好であり,有用性の高い研究発表であると認められた.

受賞者:菅 貴博(大阪大学大学院)
タイトル:「大規模な推薦商品最適化問題に対する効率的な重み付き局所探索法」
共著者:梅谷 俊治(大阪大学大学院),森田 浩(大阪大学大学院)
選考理由:本発表では,オンラインショップ等にみられる商品推薦に関する,超大規模な最適化問題の求解手法が提案された.本問題に一般的なメタヒューリスティクスを適用しても良好な解が得られないが,本発表で提案されたランダム性を導入した近傍探索を用いると,現実的な時間でよい実行可能解を得ることができる.提案手法のアイデアがわかりやすく述べられた優れた研究発表であった.

受賞者:木村 雅俊(大阪大学大学院)
タイトル:「状態数が可算無限なマルコフ連鎖に対する定常分布の数値計算と誤差評価」
共著者:なし
選考理由:本発表では,可算無限な状態集合をもつ連続時間マルコフ連鎖における条件付き定常分布が推移率行列の北西角の情報のみで定まるベクトルの凸結合で表現できること,ならびに,これらのベクトルで張られる凸多面体の性質が論じられた.研究背景から本研究で得られた結果までの流れが明確に述べられており,また得られた結果も理論的に大変優れたものであると認められた.

受賞者:中井 裕介(京都大学大学院)
タイトル:「変分不等式問題に対する確率的分散縮小射影法」
共著者:山下 信雄(京都大学大学院)
選考理由:機械学習などに現れる大規模な凸最適化問題に対する既存の手法として,確率的分散縮小勾配法がある.本発表では,この手法を変分不等式問題に対して拡張した手法が提案された.数値実験により,提案手法が既存の射影法や確率的射影法よりもよい収束性を持つことが示された.近年注目されている枠組みを拡張するという発表内容であり,実用性の高い研究発表であった.
======================================================================

日時:2018年11月17日(土)12時55分~17時45分   (シンポジウム終了後、18時~20時頃に懇親会を予定)
会場:一般社団法人 中央電気倶楽部 511号会議室
http://www.chuodenki-club.or.jp/
〒530-0044 大阪市北区堂島浜2丁目1番25号

参加費:無料(懇親会参加費は別)

懇親会に参加ご希望の方は,11月9日(金)までに以下のURLよりご登録ください。なお、参加費は6000円です。
https://goo.gl/forms/u7A8ShGyKmfwiXme2

趣旨・目的:
ビッグデータというキーワードが専門分野で広まり,一般にも取り上げられるようになって久しい. そのようなビッグデータを対象とする研究は,特定のデータを扱う応用分野や人工知能における機械学習で一定の成功を収めているように見える. 一方で,ビッグデータ解析や利活用のための汎用のアルゴリズムやデータ構造およびモデリング技法,さらには最適化の技報などの試みが行われているものの,統一的な枠組みの整備や体系化が十分であるとは言い難い. 本シンポジウムでは,ビッグデータに関わるそのような先端の取り組みの中から理論と応用の両面の話題を取り上げ,ビッグデータ研究の現状を理解した上で,ORが貢献できることやORに求められることなどを議論したいと考えている.

プログラム:
12:55-13:00 開会のごあいさつ・趣旨説明
オーガナイザー 宇野 裕之(大阪府立大学)

13:00-13:50「楽天におけるビックデータを対象とした機械学習・深層学習の活用事例」
平手 勇宇(楽天技術研究所)

13:50-14:40「生活者の実行動から新たなマーケティングの成功モデルを創造する
~ソーシャルメディアが生み出すビックデータを実ビジネスに活かすための3つのポイント~」
江頭 瑠威(電通)

14:55-15:45「確率的潜在変数モデルに基づくデータマイニング」
岩田 具治(NTTコミュニケーション科学基礎研究所)

15:45-16:35「見過ごされてきた現場の問題 - 真に有益なクラスタリングを目指して -」
宇野 毅明(国立情報学研究所)

16:50-17:40「ビッグデータにおける学術と研究の動向と方向」
徳山 豪(東北大学)

17:40-17:45 閉会のごあいさつ
関西支部長 森田 浩(大阪大学)

講演概要:
「楽天におけるビックデータを対象とした機械学習・深層学習の活用事例」
平手 勇宇(楽天技術研究所)

楽天では,楽天市場をはじめとする様々なサービスを提供しており,それらのサービスから日々膨大なデータが生成され続けている.本講演では,楽天が保有するビッグデータを対象とした,機械学習・深層学習適用に関する研究プロジェクト事例について紹介を行う.また,これら研究プロジェクトの成果を実サービスへ適用させていくにあたって苦労や課題点が存在するが,それらに対するアプローチ方法についても言及を行っていく.

「生活者の実行動から新たなマーケティングの成功モデルを創造する~ソーシャルメディアが生み出すビックデータを実ビジネスに活かすための3つのポイント~」
江頭 瑠威(電通)

ソーシャルメディアの浸透は、単にコミュニケーション手段の拡張であるだけでなく、生活者の実行動から日々生成される大量のデータをマーケティングに活用できるという新たな機会を私たちに提供してくれます。 一方で、その大量のデータの構造化やマーケティングの成否をはかれるモデル化はデータ量の問題もあり、まだ十分とはいえません。本発表では、マーケティングと実ビジネスの観点から、生活者の行動データに注目し、SNS全盛時代のビジネスの成功要因を考察いたします。

「確率的潜在変数モデルに基づくデータマイニング」
岩田 具治(NTTコミュニケーション科学基礎研究所)

データに内在する潜在構造を抽出する技術として確率的潜在変数モデルが広く利用されている. 本講演では,潜在変数モデルについての基礎について説明した後,データマイニング・機械学習分野における応用(ドメイン適応,教師なしオブジェクトマッチング,集約されたデータからの人流推定など)を紹介する.

「見過ごされてきた現場の問題 - 真に有益なクラスタリングを目指して -」
宇野 毅明(国立情報学研究所)

ときにビッグデータと言われる大量のデータは、AIの精度の向上に大きく寄与し、様々な自動化や自動認識を実現している。一方で、自動化の限界あるいは自動化の入らない分野、マーケッティングや経営判断、技術開発など、新たな発見や全体の俯瞰をする目的でもビッグデータは利用されている。一般的には、クラスタリングをして解釈を与えることが多いのだが、そこには多大な苦労があり、研究者はアルゴリズムの改良により、汎用性や精度向上を目指しているが、現状苦労が大きく減るようには見えない。考えるに、これはそもそも研究の着目点が悪く、ユーザの利便性や解の質の向上を目指すような問題が、本来たくさんあるにも関わらず、今まで取り組めてこなかったのであろう。本講演では、そのような「今まで見過ごされてきた問題」として、解釈性の高いクラスタを見つける問題と、クラスタリングを安定化させる問題を紹介し、それらに対する効率的なアルゴリズムを紹介する。これらは、計算実験で非常に良い結果を出しており、実用でのクラスタリングの困難を大きく解消することができるものである。

「ビッグデータにおける学術と研究の動向と方向」
徳山 豪(東北大学)

ビッグデータはいわゆるバズワードであるが、その社会的な認知度や影響力は非常に強い。 講演者は理論計算機科学を専門とするが、データマイニングへの応用を先駆的に行った関係で、 ビッグデータ関係の様々なプロジェクトに関与して(させられて?)いる。 本講演では、それらの俯瞰を行うとともに、ORに関係する数理科学や計算理論などとの関連を述べ、今後日本が世界の中でビッグデータ研究でどのような先導性を持つべきかという課題についての議論をしたいと思う。
日時:2018年3月10日(土)13:00〜15:20
場所:中央電気倶楽部215号室(〒530-0004大阪市北区堂島浜2丁目1番25号)
http://www.chuodenki-club.or.jp/

プログラム
・記念講演(13:00〜14:00)
「ORの競う・極める・選び出す ―仲間と拓く第二章―」
増山博之氏(京都大学): 第7回研究賞受賞者
・支部総会(14:00〜15:20)
 議案:
1.2017年度事業報告について
2.2017年度決算報告について
3.2018年度支部役員の選出について
4.2018年度事業計画について
5.2018年度予算案について
6.その他